

A216224


Natural growth of an aliquot sequence driven by a perfect number 2^(p1)*((2^p)1), but starting at 27.


2



27, 53, 55, 89, 91, 133, 187, 245, 439, 441, 1041, 1743, 3633, 7503, 13329, 25203, 44429, 66547, 76813, 90803, 90805, 167243, 187957, 280907, 332005, 499739, 499741, 600995, 841405, 1177979, 1392181, 1977419, 1992661, 2398187, 3062293, 3600363, 6739253, 7507147
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,1


COMMENTS

Quote from the abstract of the article by te Riele: "In this note, the existence of an aliquot sequence with more than 5092 monotonically increasing even terms is proved". The author uses the perfect number corresponding to the Mersenne prime 2^p1 with p=19937 (whereas the script below only uses p=521).


LINKS

Table of n, a(n) for n=1..38.
H. J. J. te Riele, A note on the CatalanDickson conjecture, Math. Comp. 27 (1973), 189192.


PROG

(PARI) lista(p=521, nb) = {perf = 2^(p1)*(2^p1); a = 27*perf; print1(a/perf, ", "); for (i=1, nb, a = sigma(a)  a; print1(a/perf, ", "); if (gcd(a/perf, p) != 1, return()); ); } \\ Michel Marcus, Mar 13 2013


CROSSREFS

Cf. A146556, A215778.
Sequence in context: A044079 A044460 A160845 * A255364 A082915 A183032
Adjacent sequences: A216221 A216222 A216223 * A216225 A216226 A216227


KEYWORD

nonn


AUTHOR

Michel Marcus, Mar 13 2013


STATUS

approved



