

A146556


Natural growth of an aliquot sequence driven by a perfect number 2^(p1)*((2^p)  1).


4



3, 5, 7, 9, 17, 19, 21, 43, 45, 111, 193, 195, 477, 927, 1777, 1779, 2973, 4963, 6397, 6399, 12961, 14983, 14985, 40191, 66993, 114063, 193233, 334959, 558273, 951999, 1586673, 3724815, 8255985, 18271887, 31279473, 66853647, 171456753, 339654927
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,1


COMMENTS

This is the natural growth of an aliquot sequence that has a driver of the form 2^(p1) * ((2^p)  1) (Perfect Number). It will continue growing this way until it loses the driver, which can only happen when the next term and the driver are not coprimes (which hardly ever happens).
The natural growth of the aliquot sequence starting with p=5 at 2^(p1)*(2^p1)*3 = 496*3 = 1488 has the factors 3, 5, 7, 9, 17, 19, 21, 43, 45, 111, 193, 195, 477, 927, 1777, 1779, 2973, 4963, 6397, 6399, 12961, 14983, 14985, 40191, 66993, 114063, 193233, 334959, 558273, 951999, 1586673, 3564018 and "loses the driver" at the next term because it is not a multiple of 496. I complemented the terms therefore from p=7 and initial factor 3 which does not lose the driver early.  R. J. Mathar, Jan 22 2009


LINKS

Table of n, a(n) for n=1..38.
Mathworld, Aliquot Sequence
Stern, Aliquot Sequences from the trenches [broken link?]


FORMULA

a(n) = a(n1) + 2*(sigma(a(n1))  a(n1)).  Roderick MacPhee, Aug 21 2012


EXAMPLE

The aliquot sequence starting at 1488 (2^4*31*3) is: 1488, 2480, 3472, 4464,8432, 9424 or: 496*3, 496*5, 496*7, 496*9, 496*17, 496*19, always keeping the 496 driver until reaching a term that is not coprime with 496.


MAPLE

p := 7: dr := 2^(p1)*(2^p1) ; f := 3 ; aliq := proc(n) option remember ; global dr, f ; local an_1 ; if n = 1 then dr*f ; else an_1 := procname(n1) ; numtheory[sigma](an_1)an_1 ; fi; end: A := proc(n) option remember ; global dr ; aliq(n)/dr ; end: for n from 1 to 70 do printf("%a, ", A(n)) ; od: # R. J. Mathar, Jan 22 2009


MATHEMATICA

NestList[2*DivisorSigma[1, #]#&, 3, 40] (* Harvey P. Dale, Jul 16 2013 *)


PROG

(PARI) A146556()=a=[3]; until(#a==79, a=concat(a, a[#a]+2*(sigma(a[#a])a[#a]))); a
(PARI) a(n)=if(n==1, 3, 2*sigma(a(n1))a(n1)) \\ R. K. Guy, Jul 16 2013


CROSSREFS

Cf. A000396, A008892, A215778, A216224.
Sequence in context: A240944 A117913 A064411 * A084229 A191356 A144753
Adjacent sequences: A146553 A146554 A146555 * A146557 A146558 A146559


KEYWORD

hard,nonn


AUTHOR

Sergio Pimentel, Oct 31 2008


EXTENSIONS

More terms, as derived from p=7, driver 8128.  R. J. Mathar, Jan 22 2009


STATUS

approved



