login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A215991
Primes that are the sum of 25 consecutive primes.
33
1259, 1361, 2027, 2267, 2633, 3137, 3389, 4057, 5153, 6257, 6553, 7013, 7451, 7901, 9907, 10499, 10799, 10949, 11579, 12401, 14369, 15013, 15329, 17377, 17903, 18251, 18427, 19309, 22441, 24023, 25057, 25229, 26041, 26699, 28111, 29017, 29207, 30707, 32939, 35051, 36583
OFFSET
1,1
COMMENTS
Such sequences already existed for all odd numbers <= 15. I chose the particular points (in A215991-A216020) so that by referring to a particular n-th term of one of these sequences, the expected range of the n-th term of an x-prime sum can be calculated for any odd x<100000.
LINKS
MAPLE
select(isprime, [seq(add(ithprime(i+k), i=1..25), k=0..250)]); # Muniru A Asiru, Feb 11 2018
MATHEMATICA
Select[ListConvolve[Table[1, 25], Prime[Range[500]]], PrimeQ] (* Jean-François Alcover, Jul 01 2018, after Harvey P. Dale *)
Select[Total/@Partition[Prime[Range[300]], 25, 1], PrimeQ] (* Harvey P. Dale, Mar 04 2023 *)
PROG
(PARI)
psumprm(m, n)={my(list=List(), s=sum(j=1, m, prime(j)), i=1); while(#list<n, s = s-prime(i)+prime(i+m); i++; if(isprime(s), listput(list, s))); Vec(list)}
psumprm(25, 40) \\ Andrew Howroyd, Feb 11 2018
(GAP) P:=Filtered([1..10^4], IsPrime);;
Filtered(List([0..250], k->Sum([1..25], i->P[i+k])), IsPrime); # Muniru A Asiru, Feb 11 2018
KEYWORD
nonn
AUTHOR
Syed Iddi Hasan, Aug 30 2012
STATUS
approved