OFFSET
0,2
LINKS
G. C. Greubel, Table of n, a(n) for n = 0..2500
R. S. Maier, Nonlinear differential equations satisfied by certain classical modular forms, arXiv:0807.1081 [math.NT], 2008-2010. See Table 1, p.12
FORMULA
Expansion of (1 + 9 * q * (eta(q^9) / eta(q))^3) * (eta(q)^3 / eta(q^3))^4 in powers of q.
G.f. is a period 1 Fourier series which satisfies f(-1 / (3 t)) = 3^5 (t/i)^4 g(t) where q = exp(2 Pi i t) and g() is the g.f. for A198956.
G.f.: 1 - 3 * (Sum_{k>0} k^3 * x^k / (1 - x^k) - 3 * (3*k)^3 * x^(3*k) / (1 - x^(3*k))).
EXAMPLE
G.f. = 1 - 3*q - 27*q^2 + 159*q^3 - 219*q^4 - 378*q^5 + 1431*q^6 - 1032*q^7 + ...
MATHEMATICA
eta[q_]:= q^(1/24)*QPochhammer[q]; CoefficientList[Series[(1 + 9*(eta[q^9]/eta[q])^3)*(eta[q]^3/eta[q^3])^4, {q, 0, 50}], q] (* G. C. Greubel, Aug 10 2018 *)
PROG
(PARI) {a(n) = local(A); if( n<0, 0, A = x * O(x^n); polcoeff( (1 + 9 * x * (eta(x^9 + A) / eta(x + A))^3) * (eta(x + A)^3 / eta(x^3 + A))^4, n))}
CROSSREFS
KEYWORD
sign
AUTHOR
Michael Somos, Aug 21 2012
STATUS
approved