login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A215027
a(n+1) = (concatenation of n and n+1) - a(n), a(0) = 0.
4
0, 1, 11, 12, 22, 23, 33, 34, 44, 45, 865, 146, 966, 247, 1067, 348, 1168, 449, 1269, 550, 1370, 651, 1471, 752, 1572, 853, 1673, 954, 1774, 1055, 1875, 1156, 1976, 1257, 2077, 1358, 2178, 1459, 2279, 1560, 2380, 1661, 2481, 1762, 2582, 1863, 2683, 1964, 2784, 2065, 2885, 2166, 2986, 2267, 3087, 2368, 3188, 2469, 3289, 2570, 3390, 2671, 3491, 2772, 3592, 2873, 3693
OFFSET
0,3
COMMENTS
Eric Angelini defined this by saying that "a(n)+a(n+1) = concatenation of n and (n+1)".
An easy induction argument shows that a(n) is always positive.
FORMULA
The o.g.f. x*(1+10*x+810*x^9-720*x^10)/(1+x)/(1-x)^2 yields correct terms up to a(99), but not beyond. - M. F. Hasler, Aug 23 2012
EXAMPLE
a(100) = concat(99,100) - a(99) = 99 100 - 4590 = 94510.
MAPLE
f:=proc(i) i*10^(1+floor(evalf(log10(i+1), 10)))+i+1; end: # A001704
a:=proc(n) option remember; global f; if n=1 then 1 else f(n-1)-a(n-1); fi; end;
PROG
(PARI) A215027(n, print_all=0)={my(a=print_all & print1(0)); for(n=1, n, a=(n-1)*10^#Str(n)+n-a; print_all & print1(", "a)); a} \\ - M. F. Hasler, Aug 23 2012
CROSSREFS
Sequence in context: A101233 A118512 A112651 * A331194 A105945 A139114
KEYWORD
nonn,base
AUTHOR
N. J. A. Sloane, Aug 04 2012, based on a posting to the Sequence Fans Mailing List by Eric Angelini.
EXTENSIONS
Initial term a(0)=0 added by M. F. Hasler, Aug 23 2012
STATUS
approved