This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A214654 E.g.f. A(x) satisfies: A'(x) = exp( A(x)*A'(x) ). 2
 1, 1, 4, 29, 307, 4288, 74511, 1550203, 37588412, 1041217039, 32446359005, 1123624632224, 42814687805649, 1780347364682777, 80231627759556196, 3895332991309376213, 202713074683790193475, 11256955024502873008864, 664444403260495390747071 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,3 COMMENTS Compare to the trivial identity: G'(x) = exp(G(x)) when G(x) = -log(1-x). LINKS Vaclav Kotesovec, Table of n, a(n) for n = 1..240 FORMULA E.g.f. A(x) satisfies: (1) A''(x) = A'(x)^3/(1 - A(x)*A'(x)). (2) A(x) = x + Sum_{n>=2} (n-2)^(n-2)*A(x)^n/n!. (3) A'(x) = Sum_{n>=0} (n+1)^(n-1)*A(x)^n/n!. (4) A(x)*A'(x) = Sum_{n>=1} n^(n-1)*A(x)^n/n!. (5) A(x) = Series_Reversion( Integral -x/LambertW(-x) dx ). Let W(x) = Sum_{n>=2} (n-2)^(n-2)*x^n/n!, then e.g.f. A(x) satisfies: (6) A(x) = Series_Reversion(x - W(x)). (7) A(x) = x + Sum_{n>=1} d^(n-1)/dx^(n-1) W(x)^n/n!. (8) A(x) = x*exp( Sum_{n>=1} d^(n-1)/dx^(n-1) W(x)^n/(n!*x) ). a(n) ~ 2^(2*n-3) * n^(n-2) / (exp(n-2) * (1+exp(-2))^(n-3/2)). - Vaclav Kotesovec, Feb 17 2014 A(x) = Series_Reversion( -((x^2*(1 + 2*LambertW(-x))) / (4*LambertW(-x)^2)) + 1/4). - Vaclav Kotesovec, Feb 21 2014 EXAMPLE E.g.f.: A(x) = x + x^2/2! + 4*x^3/3! + 29*x^4/4! + 307*x^5/5! + 4288*x^6/6! +... By definition log(A'(x)) = A(x)*A'(x), where: (3) A'(x) = 1 + x + 4*x^2/2! + 29*x^3/3! + 307*x^4/4! + 4288*x^5/5! +... (4) A(x)*A'(x) = x + 3*x^2/2! + 19*x^3/3! + 185*x^4/4! + 2437*x^5/5! + 40523*x^6/6! + 814355*x^7/7! + 19196769*x^8/8! + 519397829*x^9/9! +... RELATED SERIES: Let W(x) = x^2/2! + x^3/3! + 4*x^4/4! + 27*x^5/5! + 256*x^6/6! + 3125*x^7/7! +...+ (n-2)^(n-2)*x^n/n! +... then (6) A(x) = x + W(A(x)); equivalently, A(x - W(x)) = x. (7) A(x) = x + W(x) + d/dx W(x)^2/2! + d^2/dx^2 W(x)^3/3! + d^3/dx^3 W(x)^4/4! +... (8) log(A(x)/x) = W(x)/x + d/dx W(x)^2/(2!*x) + d^2/dx^2 W(x)^3/(3!*x) + d^3/dx^3 W(x)^4/(4!*x) +... MATHEMATICA Rest[CoefficientList[InverseSeries[Series[-((x^2*(1 + 2*LambertW[-x])) / (4*LambertW[-x]^2)) + 1/4, {x, 0, 20}], x], x]*Range[0, 20]!] (* Vaclav Kotesovec, Feb 21 2014 *) PROG (PARI) {a(n)=local(A=x); for(i=1, n, A=intformal(exp(A*A'+x*O(x^n)))); n!*polcoeff(A, n)} for(n=1, 25, print1(a(n), ", ")) (PARI) {Dx(n, F)=local(D=F); for(i=1, n, D=deriv(D)); D} {a(n)=local(A=x, W=sum(m=2, n+1, (m-2)^(m-2)*x^m/m!)+x*O(x^n)); A=x+sum(m=1, n, Dx(m-1, W^m/m!)); n!*polcoeff(A, n)} (PARI) {Dx(n, F)=local(D=F); for(i=1, n, D=deriv(D)); D} {a(n)=local(A=x, W=sum(m=2, n+1, (m-2)^(m-2)*x^m/m!)+x*O(x^n)); A=x*exp(sum(m=1, n, Dx(m-1, W^m/x/m!)+x*O(x^n))); n!*polcoeff(A, n)} CROSSREFS Cf. A210949, A214645. Sequence in context: A127770 A121630 A089470 * A014622 A067146 A210949 Adjacent sequences:  A214651 A214652 A214653 * A214655 A214656 A214657 KEYWORD nonn AUTHOR Paul D. Hanna, Jul 24 2012 EXTENSIONS Program in Mathematica improved by Vaclav Kotesovec, Feb 21 2014 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified July 18 01:14 EDT 2019. Contains 325110 sequences. (Running on oeis4.)