login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 59th year, we have over 358,000 sequences, and we’ve crossed 10,300 citations (which often say “discovered thanks to the OEIS”).

Other ways to Give
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A210949 E.g.f. A(x) satisfies: A'(x) = 1/(1 - A(A(x))). 15
1, 1, 4, 29, 309, 4383, 78121, 1684706, 42801222, 1255919755, 41918624013, 1572257236114, 65619165625383, 3022617826829288, 152615633802149416, 8397224009015443509, 500957609480739613321, 32261529179806961067634, 2234133327582388824135291 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,3

COMMENTS

An unsigned version of A067146.

Equals row sums of triangle A277410.

LINKS

Vaclav Kotesovec, Table of n, a(n) for n = 1..180

FORMULA

E.g.f. A(x) satisfies:

(1) A(x) = Series_Reversion( Integral 1 - A(x) dx ).

(2) A''(x) = 1 / ( (1 - A(A(x)))^3 * (1 - A(A(A(x)))) ).

Let G(x) = Integral A(x) dx with G(0)=0, then the e.g.f. A(x) satisfies:

(3) A(x) = x + G(A(x)) or, equivalently, A(x - G(x)) = x.

(4) A(x) = x + Sum_{n>=1} d^(n-1)/dx^(n-1) G(x)^n / n!.

(5) A(x) = x*exp( Sum_{n>=1} d^(n-1)/dx^(n-1) G(x)^n/(n!*x) ).

a(n) = Sum_{k=0..n-1} A277410(n,k).

EXAMPLE

E.g.f.: A(x) = x + x^2/2! + 4*x^3/3! + 29*x^4/4! + 309*x^5/5! + 4383*x^6/6! +...

Let G(x) = Integral A(x) dx, then A(x) = x + G(A(x)) where

G(x) = x^2/2! + x^3/3! + 4*x^4/4! + 29*x^5/5! + 309*x^6/6! + 4383*x^7/7! +...

Also,

A(x) = x + G(x) + d/dx G(x)^2/2! + d^2/dx^2 G(x)^3/3! + d^3/dx^3 G(x)^4/4! +...

log(A(x)/x) = G(x)/x + d/dx G(x)^2/(2!*x) + d^2/dx^2 G(x)^3/(3!*x) + d^3/dx^3 G(x)^4/(4!*x) +...

By definition, A'(x) = 1/(1 - A(A(x))), where

A(A(x)) = x + 2*x^2/2! + 11*x^3/3! + 101*x^4/4! + 1313*x^5/5! + 22235*x^6/6! + 466356*x^7/7! + 11710760*x^8/8! +...

MATHEMATICA

m = 20; A[_] = 0;

Do[A[x_] = InverseSeries[Integrate[1 - A[x], x] + O[x]^m], {m}];

CoefficientList[A[x], x] * Range[0, m - 1]! // Rest (* Jean-François Alcover, Sep 30 2019 *)

PROG

(PARI) {a(n)=local(A=x, G); for(i=1, n, G=intformal(A+x*O(x^n)); A=serreverse(x-G)); n!*polcoeff(A, n)}

(PARI) {a(n)=local(A=x, G); for(i=1, n, G=intformal(A+x*O(x^n)); A=x+subst(G, x, A+x*O(x^n))); n!*polcoeff(A, n)}

(PARI) {Dx(n, F)=local(D=F); for(i=1, n, D=deriv(D)); D}

{a(n)=local(A=x, G); for(i=0, n, G=intformal(A+x*O(x^n)); A=x+sum(m=1, n, Dx(m-1, G^m/m!))); n!*polcoeff(A, n)}

(PARI) {Dx(n, F)=local(D=F); for(i=1, n, D=deriv(D)); D}

{a(n)=local(A=x, G); for(i=0, n, G=intformal(A+x*O(x^n)); A=x*exp(sum(m=1, n, Dx(m-1, G^m/x/m!)+x*O(x^n)))); n!*polcoeff(A, n)}

for(n=1, 25, print1(a(n), ", "))

(PARI) {a(n) = local(A=x); for(i=1, n, A = serreverse(intformal(1-A +x*O(x^n)))); n!*polcoeff(A, n)}

for(n=1, 25, print1(a(n), ", "))

CROSSREFS

Cf. A277410, A067146, A279843, A279844, A279845, A280570, A280571, A280572, A280573, A280574, A280575.

Sequence in context: A357321 A014622 A067146 * A030019 A303928 A201627

Adjacent sequences: A210946 A210947 A210948 * A210950 A210951 A210952

KEYWORD

nonn

AUTHOR

Paul D. Hanna, Jul 22 2012

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 9 23:05 EST 2022. Contains 358710 sequences. (Running on oeis4.)