login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo

Thanks to everyone who made a donation during our annual appeal!
To see the list of donors, or make a donation, see the OEIS Foundation home page.

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A210949 E.g.f. A(x) satisfies: A'(x) = 1/(1 - A(A(x))). 15
1, 1, 4, 29, 309, 4383, 78121, 1684706, 42801222, 1255919755, 41918624013, 1572257236114, 65619165625383, 3022617826829288, 152615633802149416, 8397224009015443509, 500957609480739613321, 32261529179806961067634, 2234133327582388824135291 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,3

COMMENTS

An unsigned version of A067146.

Equals row sums of triangle A277410.

LINKS

Vaclav Kotesovec, Table of n, a(n) for n = 1..180

FORMULA

E.g.f. A(x) satisfies:

(1) A(x) = Series_Reversion( Integral 1 - A(x) dx ).

(2) A''(x) = 1 / ( (1 - A(A(x)))^3 * (1 - A(A(A(x)))) ).

Let G(x) = Integral A(x) dx with G(0)=0, then the e.g.f. A(x) satisfies:

(3) A(x) = x + G(A(x)) or, equivalently, A(x - G(x)) = x.

(4) A(x) = x + Sum_{n>=1} d^(n-1)/dx^(n-1) G(x)^n / n!.

(5) A(x) = x*exp( Sum_{n>=1} d^(n-1)/dx^(n-1) G(x)^n/(n!*x) ).

a(n) = Sum_{k=0..n-1} A277410(n,k).

EXAMPLE

E.g.f.: A(x) = x + x^2/2! + 4*x^3/3! + 29*x^4/4! + 309*x^5/5! + 4383*x^6/6! +...

Let G(x) = Integral A(x) dx, then A(x) = x + G(A(x)) where

G(x) = x^2/2! + x^3/3! + 4*x^4/4! + 29*x^5/5! + 309*x^6/6! + 4383*x^7/7! +...

Also,

A(x) = x + G(x) + d/dx G(x)^2/2! + d^2/dx^2 G(x)^3/3! + d^3/dx^3 G(x)^4/4! +...

log(A(x)/x) = G(x)/x + d/dx G(x)^2/(2!*x) + d^2/dx^2 G(x)^3/(3!*x) + d^3/dx^3 G(x)^4/(4!*x) +...

By definition, A'(x) = 1/(1 - A(A(x))), where

A(A(x)) = x + 2*x^2/2! + 11*x^3/3! + 101*x^4/4! + 1313*x^5/5! + 22235*x^6/6! + 466356*x^7/7! + 11710760*x^8/8! +...

MATHEMATICA

m = 20; A[_] = 0;

Do[A[x_] = InverseSeries[Integrate[1 - A[x], x] + O[x]^m], {m}];

CoefficientList[A[x], x] * Range[0, m - 1]! // Rest (* Jean-Fran├žois Alcover, Sep 30 2019 *)

PROG

(PARI) {a(n)=local(A=x, G); for(i=1, n, G=intformal(A+x*O(x^n)); A=serreverse(x-G)); n!*polcoeff(A, n)}

(PARI) {a(n)=local(A=x, G); for(i=1, n, G=intformal(A+x*O(x^n)); A=x+subst(G, x, A+x*O(x^n))); n!*polcoeff(A, n)}

(PARI) {Dx(n, F)=local(D=F); for(i=1, n, D=deriv(D)); D}

{a(n)=local(A=x, G); for(i=0, n, G=intformal(A+x*O(x^n)); A=x+sum(m=1, n, Dx(m-1, G^m/m!))); n!*polcoeff(A, n)}

(PARI) {Dx(n, F)=local(D=F); for(i=1, n, D=deriv(D)); D}

{a(n)=local(A=x, G); for(i=0, n, G=intformal(A+x*O(x^n)); A=x*exp(sum(m=1, n, Dx(m-1, G^m/x/m!)+x*O(x^n)))); n!*polcoeff(A, n)}

for(n=1, 25, print1(a(n), ", "))

(PARI) {a(n) = local(A=x); for(i=1, n, A = serreverse(intformal(1-A +x*O(x^n)))); n!*polcoeff(A, n)}

for(n=1, 25, print1(a(n), ", "))

CROSSREFS

Cf. A277410, A067146, A279843, A279844, A279845, A280570, A280571, A280572, A280573, A280574, A280575.

Sequence in context: A214654 A014622 A067146 * A030019 A303928 A201627

Adjacent sequences:  A210946 A210947 A210948 * A210950 A210951 A210952

KEYWORD

nonn

AUTHOR

Paul D. Hanna, Jul 22 2012

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified January 23 16:48 EST 2020. Contains 331173 sequences. (Running on oeis4.)