The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A213981 a(n) = the least prime p > prime(n+1) such that ((p mod prime(n)) + (p mod prime(n+1)) is prime. 1
 5, 7, 11, 19, 23, 31, 53, 61, 47, 59, 71, 79, 83, 223, 97, 109, 179, 131, 139, 359, 149, 241, 167, 179, 199, 509, 211, 431, 331, 227, 643, 263, 827, 283, 449, 311, 317, 823, 337, 349, 359, 367, 383, 787, 593, 401, 439, 673, 683, 691, 467, 479, 487, 769, 523, 1061, 809, 1093, 1117, 563, 571, 587, 619, 1559, 2203, 641, 673, 1021 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS Corresponding primes are 3,3,5,13,11,19,17,19,19,29,43,43,41,43,47,53,59 (s1). LINKS Andrew Howroyd, Table of n, a(n) for n = 1..1000 EXAMPLE 5 mod 2 + 5 mod 3 = 1 + 2 = 3 (prime) 7 mod 3 + 7 mod 5 = 1 +2 = 3 (prime) 19 mod 7 + 19 mod 11 = 5 +8 = 13 (prime) MATHEMATICA s=Reap[Do[Sow[Select[Prime[Range[n+2, 1000]], PrimeQ[Mod[#, Prime[n]]+ Mod[#, Prime[n+1]]]&][[1]]], {n, 70}]][[2, 1]] s1=Table[Mod[s[[n]], Prime[n]]+ Mod[s[[n]], Prime[n+1]], {n, 70}] PROG (PARI) a(n)={my(pn=prime(n)); my(pnp1=nextprime(pn+1)); my(p=nextprime(pnp1+1)); while(!isprime(p%pn + p%pnp1), p=nextprime(p+1)); p} \\ Andrew Howroyd, Feb 25 2018 CROSSREFS Sequence in context: A240849 A116641 A288446 * A273048 A240621 A040127 Adjacent sequences:  A213978 A213979 A213980 * A213982 A213983 A213984 KEYWORD nonn AUTHOR Zak Seidov, Feb 16 2013 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified January 26 23:05 EST 2020. Contains 331289 sequences. (Running on oeis4.)