login
A213843
Antidiagonal sums of the convolution array A213841.
3
1, 13, 62, 190, 455, 931, 1708, 2892, 4605, 6985, 10186, 14378, 19747, 26495, 34840, 45016, 57273, 71877, 89110, 109270, 132671, 159643, 190532, 225700, 265525, 310401, 360738, 416962, 479515, 548855, 625456, 709808, 802417, 903805, 1014510
OFFSET
1,2
FORMULA
a(n) = n*(1 + n)*(1 - 2*n + 4*n^2)/6.
a(n) = 5*a(n-1) - 10*a(n-2) + 10*a(n-3) - 5*a(n-4) + a(n-5).
G.f.: f(x)/g(x), where f(x) = x*(1 + x)(1 + 8*x) and g(x) = (1-x)^5.
MAPLE
A213843:=n->n*(1 + n)*(1 - 2*n + 4*n^2)/6: seq(A213843(n), n=1..30); # Wesley Ivan Hurt, Oct 09 2014
MATHEMATICA
Table[n (1 + n) (1 - 2 n + 4 n^2)/6, {n, 30}] (* Wesley Ivan Hurt, Oct 09 2014 *)
PROG
(Magma) [n*(1 + n)*(1 - 2*n + 4*n^2)/6 : n in [1..30]]; // Wesley Ivan Hurt, Oct 09 2014
CROSSREFS
Cf. A213841.
Sequence in context: A044532 A268201 A212108 * A031074 A285482 A175109
KEYWORD
nonn,easy
AUTHOR
Clark Kimberling, Jul 05 2012
STATUS
approved