login
A213807
a(n)=Sum(L(i)*L(j)*L(k), 0<=i<j<k<=n), where L(m) is the m-th Lucas number A000032(m).
2
0, 0, 6, 50, 295, 1450, 6706, 29790, 129900, 559680, 2395701, 10212620, 43430140, 184412740, 782337466, 3317046390, 14059122315, 59576034630, 252422169726, 1069418901650, 4530501461200, 19192481509300, 81303194179081, 344412501233400, 1458972161656920
OFFSET
0,3
COMMENTS
This is to Lucas numbers A000032 as A213787 is to Fibonacci numbers A000045.
LINKS
FORMULA
G.f.: -(x^6-19*x^5+4*x^4+53*x^3+7*x^2-8*x-6)*x^2 / ((x-1) * (x+1) * (x^2-x-1) * (x^2+x-1)*(x^2+4*x-1)*(x^2-3*x+1)). - Alois P. Heinz, Jun 21 2012
MAPLE
a:= n-> (Matrix(10, (i, j)-> `if`(i=j-1, 1, `if`(i=10,
[-1, -1, 16, -3, -51, 24, 45, -27, -8, 7][j], 0)))^(n+3).
<<-20, 1, 0, 0, 0, 6, 50, 295, 1450, 6706>>)[1, 1]:
seq (a(n), n=0..30); # Alois P. Heinz, Jun 21 2012
CROSSREFS
Sequence in context: A356251 A001303 A220887 * A241781 A272469 A223816
KEYWORD
nonn,easy
AUTHOR
Jonathan Vos Post, Jun 20 2012
STATUS
approved