login
Triangle read by rows, coefficients of the Bernoulli polynomials B_{n}(x) times A144845(n) in descending order of powers.
3

%I #11 Nov 07 2012 18:10:13

%S 1,2,-1,6,-6,1,2,-3,1,0,30,-60,30,0,-1,6,-15,10,0,-1,0,42,-126,105,0,

%T -21,0,1,6,-21,21,0,-7,0,1,0,30,-120,140,0,-70,0,20,0,-1,10,-45,60,0,

%U -42,0,20,0,-3,0,66,-330,495,0,-462,0,330,0,-99,0,5,6,-33

%N Triangle read by rows, coefficients of the Bernoulli polynomials B_{n}(x) times A144845(n) in descending order of powers.

%H T. D. Noe, <a href="/A213615/b213615.txt">Rows n = 0..100 of triangle, flattened</a>

%H Peter Luschny, <a href="http://oeis.org/wiki/User:Peter_Luschny/ComputationAndAsymptoticsOfBernoulliNumbers">The Computation and Asymptotics of the Bernoulli numbers.</a>

%F T(n,k) = A144845(n)*[x^(n-k)]B{n}(x).

%e b(0,x) = 1

%e b(1,x) = 2*x - 1

%e b(2,x) = 6*x^2 - 6*x + 1

%e b(3,x) = 2*x^3 - 3*x^2 + x

%e b(4,x) = 30*x^4 - 60*x^3 + 30*x^2 - 1

%e b(5,x) = 6*x^5 - 15*x^4 + 10*x^3 - x

%p seq(seq(coeff(denom(bernoulli(i,x))*bernoulli(i,x),x,i-j),j=0..i),i=0..12);

%t Flatten[Table[p = Reverse[CoefficientList[BernoulliB[n, x], x]]; (LCM @@ Denominator[p])*p, {n, 0, 10}]] (* _T. D. Noe_, Nov 07 2012 *)

%Y Cf. A053383, A144845, A213616.

%K sign,tabl

%O 0,2

%A _Peter Luschny_, Jun 16 2012