login
A213130
Polylogarithm li(-n,-1/7) multiplied by (8^(n+1))/7.
4
1, -1, -6, -22, 120, 3464, 30864, -189232, -11564160, -173474176, 923222784, 112587838208, 2509094415360, -7947533372416, -2393798607108096, -74042111038461952, -8461127118520320, 94056121376877215744
OFFSET
0,3
COMMENTS
See the sequence A212846 which describes the general case of li(-n,-p/q). This sequence is obtained for p=1,q=7.
LINKS
FORMULA
See formula in A212846, setting p=1,q=7.
a(n) = Sum_{k=0..n} k! * (-1)^k * 8^(n-k) * Stirling2(n,k). - Seiichi Manyama, Mar 13 2022
EXAMPLE
polylog(-5,-1/7)*8^6/7 = 3464.
MAPLE
seq(add((-1)^(n-k)*combinat[eulerian1](n, k)*7^k, k=0..n), n=0..17); # Peter Luschny, Apr 21 2013
MATHEMATICA
f[n_] := PolyLog[-n, -1/7] 8^(n + 1)/7; f[0] = 1; Array[f, 20, 0] (* Robert G. Wilson v, Dec 25 2015 *)
PROG
(PARI) \\ in A212846; run limnpq(nmax, 1, 7)
(PARI) a(n) = sum(k=0, n, k!*(-1)^k*8^(n-k)*stirling(n, k, 2)); \\ Seiichi Manyama, Mar 13 2022
CROSSREFS
Cf. A213131 through A213157.
Sequence in context: A193463 A319214 A009358 * A002137 A009361 A193445
KEYWORD
sign
AUTHOR
Stanislav Sykora, Jun 06 2012
STATUS
approved