This site is supported by donations to The OEIS Foundation.

Annual Appeal: Please make a donation (tax deductible in USA) to keep the OEIS running. Over 5000 articles have referenced us, often saying "we discovered this result with the help of the OEIS".

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A213080 Decimal expansion of Product_{n>=1} n! /(sqrt(2*Pi*n) * (n/e)^n * (1+1/n)^(1/12)). 3
 1, 0, 4, 6, 3, 3, 5, 0, 6, 6, 7, 7, 0, 5, 0, 3, 1, 8, 0, 9, 8, 0, 9, 5, 0, 6, 5, 6, 9, 7, 7, 7, 6, 0, 3, 7, 1, 0, 1, 9, 7, 4, 2, 1, 8, 1, 1, 3, 2, 6, 4, 4, 4, 2, 4, 4, 1, 5, 8, 7, 5, 3, 4, 0, 4, 2, 0, 3, 5, 7, 5, 1, 5, 6, 3, 7, 4, 4, 5, 7, 0, 7, 2, 5, 4, 8, 5, 8 (list; constant; graph; refs; listen; history; text; internal format)
 OFFSET 1,3 COMMENTS Just as Stirling's formula for the asymptotic expansion of n! involves the constant sqrt{2 Pi}, the asymptotic expansion of the product of all binomial coefficients in a row of Pascal's triangle involves a constant, the reciprocal of the constant C defined and evaluated here. LINKS Michael D. Hirschhorn, On the asymptotic behavior of Product_{k=0..n} C(n,k), Fib. Q., 51 (2013), 163-173. Bernd C. Kellner, On asymptotic constants related to products of Bernoulli numbers and factorials, arXiv:math/0604505, p. 7. FORMULA Let A denote the Glaisher-Kinkelin constant. Then C = (exp(1)^(1/12)*(2*Pi)^(1/4))/A^2 = exp(2*zeta'(-1)-1/12)*(2*Pi)^(1/4). A closely related constant is K = Product_{n>=1} (n!*(e/n)^(n+1/2))/ ((1+1/(n+1/2))^(1/12)*sqrt(2*Pi*e)) = (2^(1/6)*(3*e)^(1/12)*Pi^(1/4))/A^2 = exp(2*zeta'(-1)-1/12)*2^(1/6)*3^(1/12)*Pi^(1/4) = 1.082293504658977773529439... - Peter Luschny, Jun 22 2012 sqrt(C) = Limit_{n>=1} (Product_{k=1..n-1} k!) / f(n) where f(n) = (2*Pi)^(n/2-1/8)*exp(1/24-3/4*n^2)*n^(1/2*n^2-1/12). - Peter Luschny, Jun 23 2012 EXAMPLE 1.0463350667705031... MAPLE exp(2*Zeta(1, -1)-1/12)*(2*Pi)^(1/4); evalf(%, 100); # Peter Luschny, Jun 22 2012 MATHEMATICA RealDigits[(Exp[1]^(1/12) (2 Pi)^(1/4))/Glaisher^2, 10, 100][[1]] (*Peter Luschny, Jun 22 2012 *) PROG (Sage) import mpmath mpmath.mp.pretty=True; mpmath.mp.dps = 200 #precision mpmath.exp(2*mpmath.zeta(-1, 1, 1)-1/12)*(2*pi)^(1/4) # Peter Luschny, Jun 22 2012 (PARI) exp(2*zeta'(-1)-1/12)*(2*Pi)^(1/4) \\ Charles R Greathouse IV, Dec 12 2013 CROSSREFS Cf. A074962, A000178, A084448, A241140, A272097. Sequence in context: A197731 A138508 A016492 * A200365 A198121 A244020 Adjacent sequences:  A213077 A213078 A213079 * A213081 A213082 A213083 KEYWORD nonn,cons AUTHOR Michael David Hirschhorn, Jun 04 2012 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.