login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual Appeal: Today, Nov 11 2014, is the 4th anniversary of the launch of the new OEIS web site. 70,000 sequences have been added in these four years, all edited by volunteers. Please make a donation (tax deductible in the US) to help keep the OEIS running.

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A213080 Decimal expansion of Product_{n>=1} n! /(sqrt(2*Pi*n) * (n/e)^n * (1+1/n)^(1/12)). 2
1, 0, 4, 6, 3, 3, 5, 0, 6, 6, 7, 7, 0, 5, 0, 3, 1, 8, 0, 9, 8, 0, 9, 5, 0, 6, 5, 6, 9, 7, 7, 7, 6, 0, 3, 7, 1, 0, 1, 9, 7, 4, 2, 1, 8, 1, 1, 3, 2, 6, 4, 4, 4, 2, 4, 4, 1, 5, 8, 7, 5, 3, 4, 0, 4, 2, 0, 3, 5, 7, 5, 1, 5, 6, 3, 7, 4, 4, 5, 7, 0, 7, 2, 5, 4, 8, 5, 8 (list; constant; graph; refs; listen; history; text; internal format)
OFFSET

1,3

COMMENTS

Just as Stirling's formula for the asymptotic expansion of n! involves the constant sqrt{2 Pi}, the asymptotic expansion of the product of all binomial coefficients in a row of Pascal's triangle involves a constant, the reciprocal of the constant C defined and evaluated here.

LINKS

Table of n, a(n) for n=1..88.

Michael D. Hirschhorn, On the asymptotic behavior of Product_{k=0..n} C(n,k), Fib. Q., 51 (2013), 163-173.

FORMULA

Let A denote the Glaisher-Kinkelin constant. Then

C = (exp(1)^(1/12)*(2*Pi)^(1/4))/A^2 = exp(2*zeta'(-1)-1/12)*(2*Pi)^(1/4).

A closely related constant is K = Product_{n>=1} (n!*(e/n)^(n+1/2))/ ((1+1/(n+1/2))^(1/12)*sqrt(2*Pi*e)) = (2^(1/6)*(3*e)^(1/12)*Pi^(1/4))/A^2 = exp(2*zeta'(-1)-1/12)*2^(1/6)*3^(1/12)*Pi^(1/4) = 1.082293504658977773529439... - Peter Luschny, Jun 22 2012

sqrt(C) = Limit_{n>=1} (Product_{k=1..n-1} k!) / f(n) where f(n) = (2*Pi)^(n/2-1/8)*exp(1/24-3/4*n^2)*n^(1/2*n^2-1/12). - Peter Luschny, Jun 23 2012

EXAMPLE

1.0463350667705031...

MAPLE

exp(2*Zeta(1, -1)-1/12)*(2*Pi)^(1/4); evalf(%, 100); # Peter Luschny, Jun 22 2012

MATHEMATICA

RealDigits[(Exp[1]^(1/12) (2 Pi)^(1/4))/Glaisher^2, 10, 100][[1]] (*Peter Luschny, Jun 22 2012 *)

PROG

(Sage)

import mpmath

mpmath.mp.pretty=True; mpmath.mp.dps = 200 #precision

mpmath.exp(2*mpmath.zeta(-1, 1, 1)-1/12)*(2*pi)^(1/4) # Peter Luschny, Jun 22 2012

(PARI) exp(2*zeta'(-1)-1/12)*(2*Pi)^(1/4) \\ Charles R Greathouse IV, Dec 12 2013

CROSSREFS

Cf. A074962, A000178, A084448.

Sequence in context: A197731 A138508 A016492 * A200365 A198121 A244020

Adjacent sequences:  A213077 A213078 A213079 * A213081 A213082 A213083

KEYWORD

nonn,cons

AUTHOR

Michael David Hirschhorn, Jun 04 2012

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

Content is available under The OEIS End-User License Agreement .

Last modified November 28 05:47 EST 2014. Contains 250286 sequences.