

A213080


Decimal expansion of Product_{n>=1} n! /(sqrt(2*Pi*n) * (n/e)^n * (1+1/n)^(1/12)).


2



1, 0, 4, 6, 3, 3, 5, 0, 6, 6, 7, 7, 0, 5, 0, 3, 1, 8, 0, 9, 8, 0, 9, 5, 0, 6, 5, 6, 9, 7, 7, 7, 6, 0, 3, 7, 1, 0, 1, 9, 7, 4, 2, 1, 8, 1, 1, 3, 2, 6, 4, 4, 4, 2, 4, 4, 1, 5, 8, 7, 5, 3, 4, 0, 4, 2, 0, 3, 5, 7, 5, 1, 5, 6, 3, 7, 4, 4, 5, 7, 0, 7, 2, 5, 4, 8, 5, 8
(list;
constant;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,3


COMMENTS

Just as Stirling's formula for the asymptotic expansion of n! involves the constant sqrt{2 Pi}, the asymptotic expansion of the product of all binomial coefficients in a row of Pascal's triangle involves a constant, the reciprocal of the constant C defined and evaluated here.


LINKS

Table of n, a(n) for n=1..88.
Michael D. Hirschhorn, On the asymptotic behavior of Product_{k=0..n} C(n,k), Fib. Q., 51 (2013), 163173.


FORMULA

Let A denote the GlaisherKinkelin constant. Then
C = (exp(1)^(1/12)*(2*Pi)^(1/4))/A^2 = exp(2*zeta'(1)1/12)*(2*Pi)^(1/4).
A closely related constant is K = Product_{n>=1} (n!*(e/n)^(n+1/2))/ ((1+1/(n+1/2))^(1/12)*sqrt(2*Pi*e)) = (2^(1/6)*(3*e)^(1/12)*Pi^(1/4))/A^2 = exp(2*zeta'(1)1/12)*2^(1/6)*3^(1/12)*Pi^(1/4) = 1.082293504658977773529439...  Peter Luschny, Jun 22 2012
sqrt(C) = Limit_{n>=1} (Product_{k=1..n1} k!) / f(n) where f(n) = (2*Pi)^(n/21/8)*exp(1/243/4*n^2)*n^(1/2*n^21/12).  Peter Luschny, Jun 23 2012


EXAMPLE

1.0463350667705031...


MAPLE

exp(2*Zeta(1, 1)1/12)*(2*Pi)^(1/4); evalf(%, 100); # Peter Luschny, Jun 22 2012


MATHEMATICA

RealDigits[(Exp[1]^(1/12) (2 Pi)^(1/4))/Glaisher^2, 10, 100][[1]] (*Peter Luschny, Jun 22 2012 *)


PROG

(Sage)
import mpmath
mpmath.mp.pretty=True; mpmath.mp.dps = 200 #precision
mpmath.exp(2*mpmath.zeta(1, 1, 1)1/12)*(2*pi)^(1/4) # Peter Luschny, Jun 22 2012
(PARI) exp(2*zeta'(1)1/12)*(2*Pi)^(1/4) \\ Charles R Greathouse IV, Dec 12 2013


CROSSREFS

Cf. A074962, A000178, A084448.
Sequence in context: A197731 A138508 A016492 * A200365 A198121 A244020
Adjacent sequences: A213077 A213078 A213079 * A213081 A213082 A213083


KEYWORD

nonn,cons


AUTHOR

Michael David Hirschhorn, Jun 04 2012


STATUS

approved



