login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual Appeal: Please make a donation (tax deductible in USA) to keep the OEIS running. Over 5000 articles have referenced us, often saying "we discovered this result with the help of the OEIS".

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A213080 Decimal expansion of Product_{n>=1} n! /(sqrt(2*Pi*n) * (n/e)^n * (1+1/n)^(1/12)). 3
1, 0, 4, 6, 3, 3, 5, 0, 6, 6, 7, 7, 0, 5, 0, 3, 1, 8, 0, 9, 8, 0, 9, 5, 0, 6, 5, 6, 9, 7, 7, 7, 6, 0, 3, 7, 1, 0, 1, 9, 7, 4, 2, 1, 8, 1, 1, 3, 2, 6, 4, 4, 4, 2, 4, 4, 1, 5, 8, 7, 5, 3, 4, 0, 4, 2, 0, 3, 5, 7, 5, 1, 5, 6, 3, 7, 4, 4, 5, 7, 0, 7, 2, 5, 4, 8, 5, 8 (list; constant; graph; refs; listen; history; text; internal format)
OFFSET

1,3

COMMENTS

Just as Stirling's formula for the asymptotic expansion of n! involves the constant sqrt{2 Pi}, the asymptotic expansion of the product of all binomial coefficients in a row of Pascal's triangle involves a constant, the reciprocal of the constant C defined and evaluated here.

LINKS

Table of n, a(n) for n=1..88.

Michael D. Hirschhorn, On the asymptotic behavior of Product_{k=0..n} C(n,k), Fib. Q., 51 (2013), 163-173.

Bernd C. Kellner, On asymptotic constants related to products of Bernoulli numbers and factorials, arXiv:math/0604505, p. 7.

FORMULA

Let A denote the Glaisher-Kinkelin constant. Then

C = (exp(1)^(1/12)*(2*Pi)^(1/4))/A^2 = exp(2*zeta'(-1)-1/12)*(2*Pi)^(1/4).

A closely related constant is K = Product_{n>=1} (n!*(e/n)^(n+1/2))/ ((1+1/(n+1/2))^(1/12)*sqrt(2*Pi*e)) = (2^(1/6)*(3*e)^(1/12)*Pi^(1/4))/A^2 = exp(2*zeta'(-1)-1/12)*2^(1/6)*3^(1/12)*Pi^(1/4) = 1.082293504658977773529439... - Peter Luschny, Jun 22 2012

sqrt(C) = Limit_{n>=1} (Product_{k=1..n-1} k!) / f(n) where f(n) = (2*Pi)^(n/2-1/8)*exp(1/24-3/4*n^2)*n^(1/2*n^2-1/12). - Peter Luschny, Jun 23 2012

EXAMPLE

1.0463350667705031...

MAPLE

exp(2*Zeta(1, -1)-1/12)*(2*Pi)^(1/4); evalf(%, 100); # Peter Luschny, Jun 22 2012

MATHEMATICA

RealDigits[(Exp[1]^(1/12) (2 Pi)^(1/4))/Glaisher^2, 10, 100][[1]] (*Peter Luschny, Jun 22 2012 *)

PROG

(Sage)

import mpmath

mpmath.mp.pretty=True; mpmath.mp.dps = 200 #precision

mpmath.exp(2*mpmath.zeta(-1, 1, 1)-1/12)*(2*pi)^(1/4) # Peter Luschny, Jun 22 2012

(PARI) exp(2*zeta'(-1)-1/12)*(2*Pi)^(1/4) \\ Charles R Greathouse IV, Dec 12 2013

CROSSREFS

Cf. A074962, A000178, A084448, A241140, A272097.

Sequence in context: A197731 A138508 A016492 * A200365 A198121 A244020

Adjacent sequences:  A213077 A213078 A213079 * A213081 A213082 A213083

KEYWORD

nonn,cons

AUTHOR

Michael David Hirschhorn, Jun 04 2012

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified December 10 09:41 EST 2016. Contains 278999 sequences.