|
|
A212322
|
|
Number of compositions of n such that no two adjacent parts are equal, and the first part is not equal to the last part if there is more than one part.
|
|
5
|
|
|
1, 1, 1, 3, 3, 5, 13, 17, 29, 55, 99, 161, 293, 507, 881, 1561, 2727, 4743, 8337, 14579, 25497, 44675, 78173, 136753, 239437, 419077, 733377, 1283701, 2246823, 3932249, 6882603, 12046313, 21083545, 36901587, 64586887, 113042011, 197851265, 346287829, 606086169
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,4
|
|
COMMENTS
|
Also known as cyclic Carlitz compositions.
|
|
REFERENCES
|
Silvia Heubach and Toufik Mansour, Combinatorics of Compositions and Words, CRC Press, 2010, pages 87-88.
|
|
LINKS
|
Alois P. Heinz, Table of n, a(n) for n = 0..1000 (first 200 terms from Jair Taylor)
P. Hadjicostas, Cyclic, dihedral and symmetric Carlitz compositions of a positive integer, Journal of Integer Sequences, 20 (2017), Article 17.8.5.
Jair Taylor, Counting Words with Laguerre Series, Electron. J. Combin., 21 (2014), P2.1.
|
|
FORMULA
|
G.f.: 1 + sum(k>0: x^k/(1+x^k)^2)/(1-sum(k>0, x^k/(1+x^k))) + sum(k>0, x^(2k)/(1+x^k)).
a(n) ~ c * d^n, where d = 1.750241291718309031249738624639... (see A241902), c = 0.350601274598240344779505805689.... - Vaclav Kotesovec, May 01 2014
|
|
EXAMPLE
|
The cyclic Carlitz compositions of the n = 1...6 are
1;
2;
12, 21, 3;
13, 31, 4;
14, 23, 32, 41,5;
1212, 123, 132, 15, 2121, 213, 231, 24, 312, 321, 42, 51, 6.
|
|
MAPLE
|
# For getting the first M-1 terms, from N. J. A. Sloane, Apr 26 2014
M:=101:
t1:=add(x^i/(1+x^i), i=1..M):
t2:=add(x^i/(1+x^i)^2, i=1..M):
t3:=add(x^(2*i)/(1+x^i), i=1..M):
t0:=t2/(1-t1)+t3:
series(t0, x, 30);
seriestolist(%);
|
|
MATHEMATICA
|
terms = 39;
gf = 1 + Sum[x^k/(1 + x^k)^2, {k, 1, terms}]/(1 - Sum[x^k/(1 + x^k), {k, 1, terms}]) + Sum[x^(2 k)/(1 + x^k), {k, 1, terms}] + O[x]^terms;
CoefficientList[gf, x] (* Jean-François Alcover, Dec 30 2017 *)
|
|
PROG
|
(Sage)
for n in range(15):
Q = []
for comp in Compositions(n) :
if len(comp) == 1 or all(comp[k] != comp[k+1] for k in range(-1, len(comp)-1)):
Q.append(comp)
print(len(Q))
(PARI)
a(n) = { polcoeff(1 + sum(k=1, n, x^k/(1+x^k)^2 + O(x*x^n))/(1-sum(k=1, n, x^k/(1+x^k) + O(x*x^n))) + sum(k=1, n, x^(2*k)/(1+x^k) + O(x*x^n)), n) } \\ Andrew Howroyd, Oct 14 2017
|
|
CROSSREFS
|
Removing restriction on the first and last parts gives the Carlitz compositions, A003242.
Row sums of A293595.
Cf. A106369, A241902.
Sequence in context: A320176 A298478 A144419 * A226921 A133190 A052898
Adjacent sequences: A212319 A212320 A212321 * A212323 A212324 A212325
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
Jair Taylor, May 13 2012
|
|
STATUS
|
approved
|
|
|
|