login
A212324
(1/p)*Sum_{k=0..n}binomial(n,k)^4 where p is a prime in the interval ]n, 4n/3]
0
362, 37692, 55185580, 758665388, 641947636, 8948910312, 126203947828, 1374427747336, 19738612219080, 285537263797392, 255480709713456, 4156846359584754, 3719283584891622, 54448930157994828, 801081711581734764, 661763153045780892, 9779554604050169400
OFFSET
1,1
COMMENTS
For any p in the interval ]n, 4n/3], p divides Sum_{k=0..n}binomial(n,k)^4 (see the link).
LINKS
Peter Vandendriessche and Hojoo Lee, Problems in elementary number theory, Problem E16
EXAMPLE
362 is in the sequence because, for n=4, 5 is in the interval ]4, 16/3] and (1/5)*Sum_{k=0..4}binomial(4,k)^4 =(1/5)*(1^4 + 4^4 + 6^4 + 4^4 + 1^4) = 1810/5 = 362.
MAPLE
with(numtheory): for n from 1 to 20 do: for p from n+1 to floor(4*n/3) do: if type(p, prime)=true then s:=sum(binomial(n, k)^4, k=0..n):s:=s/p: printf(`%d, `, s):else fi:od:od:
CROSSREFS
Sequence in context: A020539 A157442 A200558 * A007565 A098253 A031517
KEYWORD
nonn
AUTHOR
Michel Lagneau, May 14 2012
STATUS
approved