login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A211226
Triangular array: T(n,k) = f(n)/(f(k)*f(n-k)), where f(n) = (floor(n/2))!.
8
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 1, 1, 1, 2, 2, 1, 1, 1, 3, 3, 6, 3, 3, 1, 1, 1, 3, 3, 3, 3, 1, 1, 1, 4, 4, 12, 6, 12, 4, 4, 1, 1, 1, 4, 4, 6, 6, 4, 4, 1, 1, 1, 5, 5, 20, 10, 30, 10, 20, 5, 5, 1, 1, 1, 5, 5, 10, 10, 10, 10, 5, 5, 1, 1, 1, 6, 6, 30, 15
OFFSET
0,12
FORMULA
T(n,k) := f(n)/(f(k)*f(n-k)), where f(n) := (floor(n/2))!.
T(2*n+1,2*k) = T(2*n+1,2*k+1) = T(2*n,2*k) = binomial(n,k);
T(2*n,2*k+1) = n*binomial(n-1,k).
Recurrence equations:
T(2*n,2*k) = T(2*n-1,2*k) + T(2*n-1,2*k-1);
T(2*n,2*k+1) = T(2*n-1,2*k+1) + (n-1)*T(2*n-1,2*k);
T(2*n+1,2*k) = T(2*n,2*k); T(2*n+1,2*k+1) = T(2*n,2*k).
The Star of David property holds:
T(n,k+1)*T(n+1,k)*T(n+2,k+2) = T(n,k)*T(n+2,k+1)*T(n+1,k+2).
O.g.f.: (1 + t*(1+x) - t^2*(1-x+x^2) - t^3*(1+x+x^2+x^3))/(1 - t^2*(1+x^2))^2 = sum {n>=0} R(n,x)*t^n = 1 + (1+x)*t + (1+x+x^2)*t^2 + (1+x+x^2+x^3)*t^3 + ....
E.g.f.: cosh(t*sqrt(1+x^2)) + (1+x+x*t/2)/sqrt(1+x^2)*sinh(t*sqrt(1+x^2)) = sum {n>=0} R(n,x)*t^n/n! = 1 + (1+x)*t + (1+x+x^2)*t^2/2! + (1+x+x^2+x^3)*t^3/3! + ....
Row generating polynomials: R(2*n+1,x) = (1+x)*(1+x^2)^n; R(2*n,x) = (1+n*x+x^2)*(1+x^2)^(n-1).
Row sums: A211227. Shallow diagonal sums A211228. Central terms T(2*n,n) equal A056040(n).
The inverse array A211229 involves the derangement numbers A000166. The squared array is A211230.
EXAMPLE
Triangle begins
.n\k.|....0....1....2....3....4....5....6....7....8....9...10...11
= = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =
..0..|....1
..1..|....1....1
..2..|....1....1....1
..3..|....1....1....1....1
..4..|....1....2....2....2....1
..5..|....1....1....2....2....1....1
..6..|....1....3....3....6....3....3....1
..7..|....1....1....3....3....3....3....1....1
..8..|....1....4....4...12....6...12....4....4....1
..9..|....1....1....4....4....6....6....4....4....1....1
.10..|....1....5....5...20...10...30...10...20....5....5....1
.11..|....1....1....5....5...10...10...10...10....5....5....1....1
...
CROSSREFS
Cf. A007318, A056040, A211227 (row sums), A211228 (shallow diagonal sums), A211229 (inverse), A211230 (array squared).
Sequence in context: A048858 A246465 A172497 * A306366 A135265 A144110
KEYWORD
nonn,easy,tabl
AUTHOR
Peter Bala, Apr 05 2012
STATUS
approved