OFFSET
0,1
COMMENTS
Equals the product_{s>=2} of 1/zeta_(8,1)(s)^gamma(s), where gamma(s) = 16, 128, 888, 6144, 42256, 293912,... is an Euler transformation of the associated polynomial (1/x)(1/x-8)/(1/x-4)^2, and where the zeta_(m,n)(s) are the zeta prime modulo functions defined in section 3.3 of arXiv:1008.2547.
Note that Product_{k>=1} (8*k-7) * (8*k+1) / (8*k-3)^2 = Pi * 2^(9/2) * Gamma(1/4)^2 / Gamma(1/8)^4 = 0.290040073098462288674... - Vaclav Kotesovec, May 13 2020
LINKS
Salma Ettahri, Olivier Ramaré, Léon Surel, Fast multi-precision computation of some Euler products, arXiv:1908.06808 [math.NT], 2019 (Corollary 1.9).
Daniel Shanks, Lal's constant and generalizations, Math. Comp. 21 (100) (1967) 705-707.
EXAMPLE
0.88307100474394667141783429900310853467688883488097347...
MATHEMATICA
$MaxExtraPrecision = 1000; digits = 121;
f[p_] := p*(p - 8)/(p - 4)^2;
coefs = Rest[CoefficientList[Series[Log[f[1/x]], {x, 0, 1000}], x]];
S[m_, n_, s_] := (t = 1; sums = 0; difs = 1; While[Abs[difs] > 10^(-digits - 5) || difs == 0, difs = (MoebiusMu[t]/t) * Log[If[s*t == 1, DirichletL[m, n, s*t], Sum[Zeta[s*t, j/m]*DirichletCharacter[m, n, j]^t, {j, 1, m}]/m^(s*t)]]; sums = sums + difs; t++]; sums);
P[m_, n_, s_] := 1/EulerPhi[m] * Sum[Conjugate[DirichletCharacter[m, r, n]] * S[m, r, s], {r, 1, EulerPhi[m]}] + Sum[If[GCD[p, m] > 1 && Mod[p, m] == n, 1/p^s, 0], {p, 1, m}];
m = 2; sump = 0; difp = 1; While[Abs[difp] > 10^(-digits - 5) || difp == 0, difp = coefs[[m]]*(P[8, 1, m] - 1/17^m); sump = sump + difp; m++];
RealDigits[Chop[N[f[17]*Exp[sump], digits]], 10, digits - 1][[1]] (* Vaclav Kotesovec, Jan 16 2021 *)
CROSSREFS
KEYWORD
AUTHOR
R. J. Mathar, Mar 25 2012
EXTENSIONS
More digits from Ettahri article added by Vaclav Kotesovec, May 12 2020
More digits from Vaclav Kotesovec, Jan 16 2021
STATUS
approved