login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A210628 Expansion of (-1 + 2*x + sqrt( 1 - 4*x^2)) / (2*x) in powers of x. 2
1, -1, 0, -1, 0, -2, 0, -5, 0, -14, 0, -42, 0, -132, 0, -429, 0, -1430, 0, -4862, 0, -16796, 0, -58786, 0, -208012, 0, -742900, 0, -2674440, 0, -9694845, 0, -35357670, 0, -129644790, 0, -477638700, 0, -1767263190, 0, -6564120420, 0, -24466267020, 0 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,6

COMMENTS

Except for the leading term, the sequence is equal to -A097331(n). - Fung Lam, Mar 22 2014

LINKS

Vincenzo Librandi, Table of n, a(n) for n = 0..1000

FORMULA

G.f.: 1 - (2*x) / (1 + sqrt( 1 - 4*x^2)) = 1 - (1 - sqrt( 1 - 4*x^2)) / (2*x).

G.f. A(x) satisfies 0 = f(x, A(x)) where f(x, y) = x*y^2 - (1 - 2*x) * (1 - y).

G.f. A(x) satisfies A( x / (1 + x^2) ) = 1 - x.

G.f. A(x) = 1 - x - x * (1 - A(x))^2 = 1 - 1/x + 1 / (1 - A(x)).

G.f. A(x) = 1 / (1 + x / (1 - 2*x + x * A(x))).

G.f. A(x) = 1 / (1 + x / (1 - x / (1 - x / (1 + x * A(x))))).

G.f. A(x) = 1 / (1 + x * A001405(x)). A126930(x) = 1 / (1 + x * A(x)).

G.f. A(x) = 1 - x / (1 - x^2 / (1 - x^2 / (1 - x^2 / ...))). - Michael Somos, Jan 02 2013

a(2*n) = 0 unless n=0, a(2*n + 1) = -A000108(n). a(n) = (-1)^n * A097331(n). a(n-1) = (-1)^floor(n/2) * A090192(n).

Convolution inverse of A210736. - Michael Somos, Jan 02 2013

G.f.: 2/( G(0) + 1), where G(k)= 1 + 4*x*(4*k+1)/( (4*k+2)*(1+2*x) - 2*x*(1+2*x)*(2*k+1)*(4*k+3)/(x*(4*k+3) + (1+2*x)*(k+1)/G(k+1))); (continued fraction). - Sergei N. Gladkovskii, Jun 24 2013

Recurrence: (n+3)*a(n+2) = 4*n*a(n), a(0)=1, a(1)=-1. - Fung Lam, Mar 17 2014

For nonzero odd-power terms, a(n) = -2^(n+1)/(n+1)^(3/2)/sqrt(2*Pi)*(1+3/(4*n) + O(1/n^2)). (with contribution of Vaclav Kotesovec) - Fung Lam, Mar 17 2014

EXAMPLE

G.f. = 1 - x - x^3 - 2*x^5 - 5*x^7 - 14*x^9 - 42*x^11 - 132*x^13 - 429*x^15 + ...

MATHEMATICA

CoefficientList[Series[1 - 2 x/(1 + Sqrt[1 - 4 x^2]), {x, 0, 45}], x] (* Bruno Berselli, Mar 25 2012 *)

a[ n_] := SeriesCoefficient[ (-1 + 2 x + Sqrt[1 - 4 x^2]) / (2 x), {x, 0, n}];

PROG

(PARI) {a(n) = polcoeff( (-1 + 2*x + sqrt( 1 - 4*x^2 + x^2 * O(x^n))) / (2*x), n)};

(PARI) {a(n) = if( n<1, n==0, polcoeff( serreverse( -x / (1 + x^2) + x * O(x^n)), n))};

(PARI) {a(n) = my(A); if( n<0, 0, A = 1 + O(x); for( k=1, n, A = 1 - x - x * (1 - A)^2); polcoeff( A, n))};

(Maxima) makelist(coeff(taylor(1-2*x/(1+sqrt(1-4*x^2)), x, 0, n), x, n), n, 0, 45); \\ Bruno Berselli, Mar 25 2012

(MAGMA) m:=50; R<x>:=PowerSeriesRing(Rationals(), m); Coefficients(R!((-1 + 2*x + Sqrt(1-4*x^2))/(2*x))); // G. C. Greubel, Aug 11 2018

CROSSREFS

Cf. A000108, A001405, A090192, A097331, A126930, A210736.

Sequence in context: A245928 A242839 A105523 * A126120 A090192 A097331

Adjacent sequences:  A210625 A210626 A210627 * A210629 A210630 A210631

KEYWORD

sign

AUTHOR

Michael Somos, Mar 25 2012

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified November 11 22:31 EST 2019. Contains 329046 sequences. (Running on oeis4.)