login
Triangle of coefficients of polynomials u(n,x) jointly generated with A124927; see the Formula section.
3

%I #19 Oct 26 2024 04:21:38

%S 1,3,5,2,7,6,2,9,12,8,2,11,20,20,10,2,13,30,40,30,12,2,15,42,70,70,42,

%T 14,2,17,56,112,140,112,56,16,2,19,72,168,252,252,168,72,18,2,21,90,

%U 240,420,504,420,240,90,20,2,23,110,330,660,924,924,660,330,110

%N Triangle of coefficients of polynomials u(n,x) jointly generated with A124927; see the Formula section.

%C Row sums: A000225

%C For a discussion and guide to related arrays, see A208510.

%C u(n,x) = u(n-1,x) + v(n-1,x) + 1,

%C v(n,x) = x*u(n-1,x) + x*v(n-1,x) + 1,

%C where u(1,x)=1, v(1,x)=1.

%C Subtriangle of the triangle given by (1, 2, -2, 1, 0, 0, 0, 0, 0, 0, 0, ...) DELTA (0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, ...) where DELTA is the operator defined in A084938. - _Philippe Deléham_, Mar 25 2012

%F First five rows:

%F 1;

%F 3,

%F 5, 2;

%F 7, 6, 2;

%F 9, 12, 8, 2;

%F First three polynomials u(n,x): 1, 3, 5 + 2x.

%F Also, counting the top row as row 0, row n for n > 0 is as follows: 2n+1, 2C(n,2), 2C(n,3), ..., 2C(n,n).

%F From _Philippe Deléham_, Mar 25 2012: (Start)

%F As DELTA-triangle T(n,k) with 0 <= k <= n:

%F G.f.: (1-x-y*x+2*x^2)/(1-2*x-y*x+x^2+y*x^2).

%F T(n,k) = 2*T(n-1,k) + T(n-1,k-1) - T(n-2,k) - T(n-2,k-1), T(0,0) = T(1,0) = 1, T(2,0) = 3, T(1,1) = T(2,1) = T(2,2) = 0 and T(n,k) = 0 if k < 0 or if k > n. (End)

%F G.f.: (1+x-x*y)*x*y/((-1+x)*(x+x*y-1)). - _R. J. Mathar_, Aug 12 2015

%e From _Philippe Deléham_, Mar 25 2012: (Start)

%e (1, 2, -2, 1, 0, 0, ...) DELTA (0, 0, 1, 0, 0, ...) begins:

%e 1;

%e 1, 0;

%e 3, 0, 0;

%e 5, 2, 0, 0;

%e 7, 6, 2, 0, 0;

%e 9, 12, 8, 2, 0, 0;

%e 11, 20, 20, 10, 2, 0, 0;

%e 13, 30, 40, 30, 12, 2, 0, 0; (End)

%t u[1, x_] := 1; v[1, x_] := 1; z = 16;

%t u[n_, x_] := u[n - 1, x] + v[n - 1, x] + 1;

%t v[n_, x_] := x*u[n - 1, x] + x*v[n - 1, x] + 1;

%t Table[Expand[u[n, x]], {n, 1, z/2}]

%t Table[Expand[v[n, x]], {n, 1, z/2}]

%t cu = Table[CoefficientList[u[n, x], x], {n, 1, z}];

%t TableForm[cu]

%t Flatten[%] (* A210042 *)

%t Table[Expand[v[n, x]], {n, 1, z}]

%t cv = Table[CoefficientList[v[n, x], x], {n, 1, z}];

%t TableForm[cv]

%t Flatten[%] (* A124927 *)

%t Table[u[n, x] /. x -> 1, {n, 1, z}] (* A000225 *)

%t Table[v[n, x] /. x -> 1, {n, 1, z}] (* A000225 *)

%t Table[u[n, x] /. x -> -1, {n, 1, z}] (* A010701 *)

%t Table[v[n, x] /. x -> -1, {n, 1, z}] (* A000012 signed *)

%Y Cf. A124927, A208510.

%K nonn,tabf

%O 1,2

%A _Clark Kimberling_, Mar 17 2012