login
A209254
Number of ways to write 2n-1 = p+q with q practical, p and p^4+q^4 both prime.
14
0, 1, 1, 2, 2, 2, 3, 1, 2, 2, 3, 2, 4, 3, 1, 3, 1, 1, 4, 2, 5, 5, 1, 4, 1, 2, 4, 3, 1, 6, 3, 4, 4, 5, 1, 6, 7, 2, 4, 3, 4, 2, 4, 5, 1, 2, 3, 7, 5, 2, 4, 8, 4, 6, 5, 1, 2, 2, 3, 8, 3, 1, 5, 6, 2, 4, 7, 4, 8, 4, 2, 7, 6, 3, 4, 3, 1, 6, 6, 1, 7, 6, 2, 8, 9, 5, 7, 3, 3, 10, 7, 3, 9, 14, 1, 9, 4, 3, 4, 6
OFFSET
1,4
COMMENTS
Conjecture: a(n)>0 for all n>1.
Zhi-Wei Sun also conjectured that any odd integer greater than one can be written as p+q with q practical, and p and p^2+q^2 both prime. This is a refinement of Ming-Zhi Zhang's problem related to A036468.
LINKS
G. Melfi, On two conjectures about practical numbers, J. Number Theory 56 (1996) 205-210 [MR96i:11106].
Zhi-Wei Sun, Conjectures involving primes and quadratic forms, arxiv:1211.1588 [math.NT], 2012-2017.
EXAMPLE
a(8)=1 since 2*8-1=11+4 with 4 practical, 11 and 11^4+4^4=14897 both prime.
MATHEMATICA
f[n_]:=f[n]=FactorInteger[n]
Pow[n_, i_]:=Pow[n, i]=Part[Part[f[n], i], 1]^(Part[Part[f[n], i], 2])
Con[n_]:=Con[n]=Sum[If[Part[Part[f[n], s+1], 1]<=DivisorSigma[1, Product[Pow[n, i], {i, 1, s}]]+1, 0, 1], {s, 1, Length[f[n]]-1}]
pr[n_]:=pr[n]=n>0&&(n<3||Mod[n, 2]+Con[n]==0)
a[n_]:=a[n]=Sum[If[pr[2n-1-Prime[k]]==True&&PrimeQ[Prime[k]^4+(2n-1-Prime[k])^4]==True, 1, 0], {k, 1, PrimePi[2n-1]}]
Do[Print[n, " ", a[n]], {n, 1, 100}]
CROSSREFS
KEYWORD
nonn
AUTHOR
Zhi-Wei Sun, Jan 14 2013
STATUS
approved