OFFSET
1,4
COMMENTS
Conjecture: a(n)>0 for all n>1.
This has been verified for n up to 5*10^6.
LINKS
Zhi-Wei Sun, Table of n, a(n) for n = 1..10000
Zhi-Wei Sun, Conjectures involving primes and quadratic forms, arxiv:1211.1588 [math.NT], 2012-2017
EXAMPLE
a(40)=1 since 2*40-1=23+56 with 23 a Sophie Germain prime and 56 a practical number.
MATHEMATICA
f[n_]:=f[n]=FactorInteger[n]
Pow[n_, i_]:=Pow[n, i]=Part[Part[f[n], i], 1]^(Part[Part[f[n], i], 2])
Con[n_]:=Con[n]=Sum[If[Part[Part[f[n], s+1], 1]<=DivisorSigma[1, Product[Pow[n, i], {i, 1, s}]]+1, 0, 1], {s, 1, Length[f[n]]-1}]
pr[n_]:=pr[n]=n>0&&(n<3||Mod[n, 2]+Con[n]==0)
a[n_]:=a[n]=Sum[If[PrimeQ[2Prime[k]+1]==True&&pr[2n-1-Prime[k]]==True, 1, 0], {k, 1, PrimePi[2n-1]}]
Do[Print[n, " ", a[n]], {n, 1, 100}]
CROSSREFS
KEYWORD
nonn
AUTHOR
Zhi-Wei Sun, Jan 14 2013
STATUS
approved