login
A208945
T(n,k) = number of n-bead necklaces labeled with numbers -k..k not allowing reversal, with sum zero with no three beads in a row equal.
13
1, 1, 2, 1, 3, 2, 1, 4, 6, 5, 1, 5, 12, 22, 8, 1, 6, 20, 57, 68, 20, 1, 7, 30, 122, 274, 264, 38, 1, 8, 42, 223, 766, 1464, 988, 88, 1, 9, 56, 366, 1722, 5238, 7974, 3954, 196, 1, 10, 72, 563, 3376, 14430, 37044, 45050, 15980, 464, 1, 11, 90, 820, 6004, 33468, 125322, 270832
OFFSET
1,3
COMMENTS
Table starts
..1....1.....1......1.......1.......1........1........1........1.........1
..2....3.....4......5.......6.......7........8........9.......10........11
..2....6....12.....20......30......42.......56.......72.......90.......110
..5...22....57....122.....223.....366......563......820.....1143......1544
..8...68...274....766....1722....3376.....6004.....9928....15514.....23178
.20..264..1464...5238...14430...33468....68722...128844...225126....371858
.38..988..7974..37044..125322..344456...817362..1738516..3397474...6205668
.88.3954.45050.270832.1123612.3656654.10024344.24184890.52854218.106749960
LINKS
EXAMPLE
Some solutions for n=5, k=5:
.-2...-5...-4...-3...-4...-4...-5...-5...-4...-3...-3...-5...-5...-5...-5...-4
..1....4...-1....1...-3...-2....4....3....0....3...-1....3....4....0...-5....2
..0...-1...-3...-1....1....4....3....4....3....1....1...-1....0....3....5....3
..2....4....5....2....2....3....0...-3....0....0....4....5....2...-2....3...-3
.-1...-2....3....1....4...-1...-2....1....1...-1...-1...-2...-1....4....2....2
CROSSREFS
Row 3 is A002378.
Sequence in context: A361894 A066121 A039911 * A209073 A332077 A220901
KEYWORD
nonn,tabl
AUTHOR
R. H. Hardin, Mar 03 2012
STATUS
approved