login
A039911
Triangle read by rows: number of compositions of n into relatively prime summands.
1
1, 1, 2, 1, 3, 2, 1, 4, 6, 4, 1, 5, 10, 9, 2, 1, 6, 15, 20, 15, 6, 1, 7, 21, 35, 34, 18, 4, 1, 8, 28, 56, 70, 56, 27, 6, 1, 9, 36, 84, 126, 125, 80, 30, 4, 1, 10, 45, 120, 210, 252, 210, 120, 45, 10, 1, 11, 55, 165, 330, 462, 461, 325, 154, 42, 4, 1, 12, 66, 220, 495, 792, 924, 792
OFFSET
2,3
COMMENTS
From C. Ronaldo: (Start)
Let R_k(n) be the number of compositions (ordered partitions) of n with k relatively prime parts. We have the following expressions for R:
Formula: R_k(n) = Sum_{d|n} C(d-1,k-1)*mobius(n/d).
Recurrence: C(n,k) = Sum_{j=k..n} floor(n/j)*R_k(j) for k > 1 and R_1(j) = delta_j1 (the Kronecker delta).
G.f.: Sum_{j>=1} R_k(j)(x^j/(1-x^j)) = (x/(1-x))^k. (End)
EXAMPLE
Triangle begins:
1;
1, 2;
1, 3, 2;
1, 4, 6, 4;
1, 5, 10, 9, 2;
1, 6, 15, 20, 15, 6;
...
MAPLE
with(numtheory):R:=proc(n, k) local s, d: s:=0: for d from 1 to n do if irem(n, d)=0 then s:=s+binomial(d-1, k-1)*mobius(n/d) fi od: RETURN(s) : end; seq(seq(R(n, n-k+1), k=1..n-1), n=1..15); R:=proc(n, k) options remember: local j: if k=1 then RETURN(piecewise(n=1, 1)) else RETURN(binomial(n, k)-add(floor(n/j)*R(j, k), j=k..n-1)) fi: end; seq(seq(R(n, n-k+1), k=1..n-1), n=1..15); # C. Ronaldo
CROSSREFS
Emeric Deutsch points out that the mirror-image, A101391, is a better version of this triangle.
Sequence in context: A136451 A361894 A066121 * A208945 A209073 A332077
KEYWORD
tabl,nonn,easy
EXTENSIONS
More terms from C. Ronaldo (aga_new_ac(AT)hotmail.com), Dec 28 2004
STATUS
approved