OFFSET
0,3
COMMENTS
Previous name was: Expand 1/(1 - x/2 - x^2 + x^3 - x^5) in powers of x, then multiply coefficient of x^n by 2^n to get integers.
The sequence is from -1 + x^2 - x^3 - x^4/2 + x^5 with real root 1.1647612555333289.
The limiting ratio of successive terms is 2*1.1647612555333289.
Recurrence: -32 *a (n) + 8 *a (n + 2) - 4 *a (n + 4) + a (n + 5) == 0; with a (1) == 1; a (2) == 1; a (3) == 5; a (4) == 1; a (5) == 13 (from FindSequenceFunction[]).
LINKS
G. C. Greubel, Table of n, a(n) for n = 0..1000
Index entries for linear recurrences with constant coefficients, signature (1,4,-8,0,32).
MATHEMATICA
CoefficientList[Series[1/(1 - x/2 - x^2 + x^3 - x^5), {x, 0, 50}], x] * 2^Range[0, 50]
LinearRecurrence[{1, 4, -8, 0, 32}, {1, 1, 5, 1, 13}, 100] (* G. C. Greubel, Nov 16 2016 *)
PROG
(PARI) for(n=0, 30, print1(2^n*polcoeff(1/(1-x/2 - x^2 + x^3 - x^5) + O(x^32), n), ", ")) \\ G. C. Greubel, Nov 16 2016
CROSSREFS
KEYWORD
nonn,easy,less
AUTHOR
Roger L. Bagula, Feb 02 2012
EXTENSIONS
New name from Joerg Arndt, Nov 19 2016
STATUS
approved