login
A203411
Discriminant of the cyclotomic binomial period polynomial for an odd prime.
2
1, 5, 49, 14641, 371293, 410338673, 16983563041, 41426511213649, 10260628712958602189, 756943935220796320321, 456487940826035155404146917, 4394336169668803158610484050361, 467056167777397914441056671494001, 6111571184724799803076702357055363809
OFFSET
2,2
LINKS
Mohammad K. Azarian, On the Hyperfactorial Function, Hypertriangular Function, and the Discriminants of Certain Polynomials, International Journal of Pure and Applied Mathematics, Vol. 36, No. 2, 2007, pp. 251-257. Mathematical Reviews, MR2312537. Zentralblatt MATH, Zbl 1133.11012.
J. Brillhart, Note on the discriminant of certain cyclotomic period polynomials, Pacific Journal of Mathematics, 152/1(1992), 15-19.
L. Carlitz and F. R. Olson, Maillet's determinant, Proceedings of the American Mathematical Society, 6/2 (1955), 265-269.
L. Carlitz, A special determinant, Proceedings of the American Mathematical Society, 6/2 (1955), 270-272.
FORMULA
a(n) = prime(n)^((prime(n)-3)/2).
EXAMPLE
a(5) = 11^4 = 14641, because prime(5) = 11.
MATHEMATICA
#^((#-3)/2)&/@Prime[Range[2, 20]] (* Harvey P. Dale, Aug 11 2023 *)
PROG
(PARI) a(n) = prime(n)^((prime(n)-3)/2); \\ Michel Marcus, Apr 15 2017
CROSSREFS
Cf. A152291.
Sequence in context: A075986 A251657 A084765 * A218322 A247707 A082795
KEYWORD
nonn
AUTHOR
Franz Vrabec, Jan 01 2012
EXTENSIONS
More terms from Franklin T. Adams-Watters, Jan 24 2012
STATUS
approved