The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Please make a donation to keep the OEIS running. We are now in our 56th year. In the past year we added 10000 new sequences and reached almost 9000 citations (which often say "discovered thanks to the OEIS"). Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A203411 Discriminant of the cyclotomic binomial period polynomial for an odd prime. 2
 1, 5, 49, 14641, 371293, 410338673, 16983563041, 41426511213649, 10260628712958602189, 756943935220796320321, 456487940826035155404146917, 4394336169668803158610484050361, 467056167777397914441056671494001, 6111571184724799803076702357055363809 (list; graph; refs; listen; history; text; internal format)
 OFFSET 2,2 LINKS Mohammad K. Azarian, On the Hyperfactorial Function, Hypertriangular Function, and the Discriminants of Certain Polynomials, International Journal of Pure and Applied Mathematics, Vol. 36, No. 2, 2007, pp. 251-257.  Mathematical Reviews, MR2312537.  Zentralblatt MATH, Zbl 1133.11012. J. Brillhart, Note on the discriminant of certain cyclotomic period polynomials, Pacific Journal of Mathematics, 152/1(1992), 15-19. L. Carlitz and F. R. Olson, Maillet's determinant, Proceedings of the American Mathematical Society, 6/2 (1955), 265-269. L. Carlitz, A special determinant, Proceedings of the American Mathematical Society, 6/2 (1955), 270-272. FORMULA a(n) = prime(n)^((prime(n)-3)/2). EXAMPLE a(5) = 11^4 = 14641, because prime(5) = 11. PROG (PARI) a(n) = prime(n)^((prime(n)-3)/2); \\ Michel Marcus, Apr 15 2017 CROSSREFS Cf. A152291. Sequence in context: A075986 A251657 A084765 * A218322 A247707 A082795 Adjacent sequences:  A203408 A203409 A203410 * A203412 A203413 A203414 KEYWORD nonn AUTHOR Franz Vrabec, Jan 01 2012 EXTENSIONS More terms from Franklin T. Adams-Watters, Jan 24 2012 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 3 16:20 EST 2020. Contains 338906 sequences. (Running on oeis4.)