login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A202814 Moments of the quadratic coefficient of the characteristic polynomial of a random matrix in U(1) X U(1) (embedded in USp(4)). 14
1, 2, 8, 32, 148, 712, 3584, 18496, 97444, 521096, 2820448, 15414016, 84917584, 470982176, 2627289344, 14728751872, 82928400164, 468699173576, 2657978454944, 15118824666496, 86230489902928, 493021885470496, 2825114755879424, 16221295513400576, 93312601350167824, 537693975424462112, 3103220029717015424 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

LINKS

G. C. Greubel, Table of n, a(n) for n = 0..1000

Nachum Dershowitz, Touchard’s Drunkard, Journal of Integer Sequences, Vol. 20 (2017), #17.1.5.

Francesc Fite, Kiran S. Kedlaya, Victor Rotger and Andrew V. Sutherland, Sato-Tate distributions and Galois endomorphism modules in genus 2 arXiv:1110.6638 [math.NT], 2011 (the sequence b-hat(n) defined at the end of Section 5.1.1).

FORMULA

a(n) = Sum_{k=0..n} binomial(n, k)*2^(n-k)*b(k)^2, where b() = A126869().

E.g.f.: (exp(x) * I_0(2*x))^2 = square of e.g.f. of A002426. - Michael Somos, Jun 27 2012

From Mark van Hoeij, May 07 2013: (Start)

a(n) is the constant term of (2+x+y+1/x+1/y)^n.

G.f.: hypergeom([1/2, 1/2],[1],16*x^2/(1-2*x)^2)/(1-2*x). (End)

G.f.: 1 / AGM(1-6*x, 1+2*x), where AGM(x,y) = AGM((x+y)/2,sqrt(x*y)) is the arithmetic-geometric mean. - Paul D. Hanna, Aug 31 2014

Conjecture: n^2*a(n) +2*(-3*n^2+3*n-1)*a(n-1) -4*(n-1)^2*a(n-2) +24*(n-1) *(n-2)*a(n-3)=0. - R. J. Mathar, Jun 14 2016

a(n) ~ 2^(n-1) * 3^(n+1) / (Pi*n). - Vaclav Kotesovec, Jul 20 2019

EXAMPLE

1 + 2*x + 8*x^2 + 32*x^3 + 148*x^4 + 712*x^5 + 3584*x^6 + 18496*x^7 + 97444*x^8 + ...

MAPLE

b:=n->coeff((x^2+1)^n, x, n); #A126869

bh:=n->add(binomial(n, k)*2^(n-k)*b(k)^2, k=0..n);

[seq(bh(n), n=0..30)];

MATHEMATICA

a[ n_] := If[ n < 0, 0, n! SeriesCoefficient[ (Exp[x] BesselI[0, 2 x])^2, {x, 0, n}]] (* Michael Somos, Jun 27 2012 *)

PROG

(PARI) {a(n) = local(A); if( n<0, 0, A = x * O(x^n); n! * polcoeff( (exp(x + A) * besseli( 0, 2*x + A))^2, n))} /* Michael Somos, Jun 27 2012 */

(PARI) {a(n)=polcoeff( 1 / agm(1-6*x, 1+2*x +x*O(x^n)), n)}

for(n=0, 20, print1(a(n), ", ")) \\ Paul D. Hanna, Aug 31 2014

CROSSREFS

Cf. A126869 (the sequence b(n)), A202856.

Cf. A002426.

Sequence in context: A129400 A003304 A150864 * A054116 A131785 A006669

Adjacent sequences:  A202811 A202812 A202813 * A202815 A202816 A202817

KEYWORD

nonn

AUTHOR

N. J. A. Sloane, Dec 24 2011

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified August 18 00:56 EDT 2019. Contains 326059 sequences. (Running on oeis4.)