login
A202811
Number of nX7 nonnegative integer arrays with each row and column increasing from zero by 0, 1 or 2
1
1, 28, 1925, 185051, 17870566, 1420586923, 83834499040, 3569257400553, 111459151645204, 2641129540510016, 49234329818852639, 745835721746043801, 9437806620755614177, 102070059376685237588, 961550132935851976722
OFFSET
1,2
COMMENTS
Column 7 of A202812
LINKS
FORMULA
Empirical: a(n) = (505049821571377/2310865325251447201551221391849525608448000000000)*n^42 + (505049821571377/10003745996759511695026932432249028608000000000)*n^41 + (697157521013072269/122387292487184660151841690439417384140800000000)*n^40 + (4225542901791488911/10198941040598721679320140869951448678400000000)*n^39 + (511015022813422599037/23536017785997050029200325084503343104000000000)*n^38 + (4273509720759627379/4915626104009408945112849850564608000000000)*n^37 + (89031566214894674989/3232493736243279544894340032207257600000000)*n^36 + (730504744107719389/1035231892736274260115026293555200000000)*n^35 + (248086127009893503581713/16739699705545554786059975166787584000000000)*n^34 + (2482455352042995450827/9653806058561450280311404363776000000000)*n^33 + (1456419904033856852149679/393875287189307171436705298042060800000000)*n^32 + (1325715508198579039/30110330990505299065543065600000000)*n^31 + (416622866734588556399296799/963512127264165392493015648436224000000000)*n^30 + (1052394587051030319435197/301852170195540536495305654272000000000)*n^29 + (8795598677269564384816283/379709212714942026598232767856640000000)*n^28 + (15329972564886606760489/116332479385705277756811509760000000)*n^27 + (895628580964583863936016227/1241357041568079702340376356454400000000)*n^26 + (48678001709692534354529/11125962746973548280859852800000000)*n^25 + (581626049952438163656607155611/20854798298343738999318322788433920000000)*n^24 + (38563493252926457063285272987/248271408313615940468075271290880000000)*n^23 + (21484352351603722106031974752901/30764065812774149144957153181696000000000)*n^22 + (684171961149757475852927444833/233061104642228402613311766528000000000)*n^21 + (4222697192437578733723977107198779/283029405477522172133605809271603200000000)*n^20 + (689911123340090662257210017/9204646539188798196233011200000000)*n^19 + (408227466066257629009423821811718437/1694452361740428793694613726560256000000000)*n^18 + (453255628871104700565709252939459/1186591289734193833119477399552000000000)*n^17 + (730460424832468133438585412018191/355977386920258149935843219865600000000)*n^16 + (7494941073955233684715626306593/337099798219941429863487897600000000)*n^15 + (89975313122389958803306362312702263/992629251989181379628793593856000000000)*n^14 + (6368274361663651815586495464767/145889072896705082249969664000000000)*n^13 - (1226004201038261258632936486923362159/2393339418685026215327202331852800000000)*n^12 + (372065661429794836176096265003/445509834204686220774604800000000)*n^11 + (2379028276120387850136163467829732067/269092394957972524210069045248000000000)*n^10 + (286726784528221451647226875514471191/22424366246497710350839087104000000000)*n^9 - (4671555612867846794127782927983/309301603399968418632263270400000)*n^8 + (62894475039471684088010661043/11408407736313446454435840000000)*n^7 + (133049653188380852729436298770471293/5243252857774846579949667102720000000)*n^6 + (12542813288577787536504887822663/126100357329842390090179584000000)*n^5 + (20897339896148563497765300816541/37649963831338656469782190080000)*n^4 + (1581363911193207268214251/4971316050742945936032000)*n^3 - (9125967420123876763635563/8499263727260861466912000)*n^2 + (6926088125953253/109530094869795600)*n + 1
EXAMPLE
Some solutions for n=3
..0..0..0..0..0..0..0....0..0..0..0..0..0..0....0..0..0..0..0..0..0
..0..0..1..2..2..2..2....0..1..1..1..1..1..1....0..0..0..1..1..1..1
..0..2..2..2..2..3..3....0..1..1..1..1..1..2....0..0..1..2..3..3..3
CROSSREFS
Sequence in context: A197438 A263026 A294192 * A285749 A276702 A007219
KEYWORD
nonn
AUTHOR
R. H. Hardin Dec 24 2011
STATUS
approved