login
A202410
Inverse Lah transform of 1,2,3,...; e.g.f. exp(x/(x-1))*(2*x-1)/(x-1).
2
1, -2, -1, 2, 17, 94, 487, 2386, 9473, 638, -727729, -14280542, -222283631, -3235193378, -46058318473, -649936245646, -9071848025983, -123239922765314, -1562265600970337, -16288001936745662, -55920926830283119, 4236297849575724638, 201330840708035368199
OFFSET
0,2
LINKS
FORMULA
a(n) = Sum_{k=0..n} (-1)^k*(n-k)!*binomial(n,n-k)*binomial(n-1,n-k)* (k+1).
a(n) = n!*(L(n,1)-2*L(n-1,1)) for n>0 and a(0)=1. L(n,x) denotes the n-th Laguerre polynomial.
MAPLE
A202410_list := proc(n) local k; exp(x/(x-1))*(2*x-1)/(x-1);
seq(k!*coeff(series(%, x, n+2), x, k), k=0..n) end: A202410_list(22);
MATHEMATICA
Table[If[n==0, 1, n! (LaguerreL[n, 1] - 2 LaguerreL[n-1, 1])], {n, 0, 20}]
With[{nmax = 50}, CoefficientList[Series[Exp[x/(x - 1)]*(2*x - 1)/(x - 1), {x, 0, nmax}], x]*Range[0, nmax]!] (* G. C. Greubel, May 23 2018 *)
PROG
(Sage)
def Lah(n, k) :
return (-1)^n*factorial(n-k)*binomial(n, n-k)*binomial(n-1, n-k)
def Lah_invtrans(A) :
L = []
for n in range(len(A)) :
S = sum((-1)^(n-k)*Lah(n, k)*A[k] for k in (0..n))
L.append(S)
return L
def A202410_list(n) :
return Lah_invtrans([i for i in (1..n)])
A202410_list(20)
(PARI) x='x+O('x^30); Vec(serlaplace(exp(x/(x-1))*(2*x-1)/(x-1))) \\ G. C. Greubel, May 23 2018
(Magma) m:=25; R<x>:=PowerSeriesRing(Rationals(), m); b:=Coefficients(R!(Exp(x/(x-1))*(2*x-1)/(x-1))); [Factorial(n-1)*b[n]: n in [1..m]]; // G. C. Greubel, May 23 2018
CROSSREFS
Cf. A059115.
Sequence in context: A375955 A251731 A058260 * A358495 A271225 A349563
KEYWORD
sign
AUTHOR
Peter Luschny, Jan 18 2012
STATUS
approved