OFFSET
0,2
LINKS
G. C. Greubel, Table of n, a(n) for n = 0..449
Peter Luschny, Sequence transformations.
FORMULA
a(n) = Sum_{k=0..n} (-1)^k*(n-k)!*binomial(n,n-k)*binomial(n-1,n-k)* (k+1).
a(n) = n!*(L(n,1)-2*L(n-1,1)) for n>0 and a(0)=1. L(n,x) denotes the n-th Laguerre polynomial.
MAPLE
MATHEMATICA
Table[If[n==0, 1, n! (LaguerreL[n, 1] - 2 LaguerreL[n-1, 1])], {n, 0, 20}]
With[{nmax = 50}, CoefficientList[Series[Exp[x/(x - 1)]*(2*x - 1)/(x - 1), {x, 0, nmax}], x]*Range[0, nmax]!] (* G. C. Greubel, May 23 2018 *)
PROG
(Sage)
def Lah(n, k) :
return (-1)^n*factorial(n-k)*binomial(n, n-k)*binomial(n-1, n-k)
def Lah_invtrans(A) :
L = []
for n in range(len(A)) :
S = sum((-1)^(n-k)*Lah(n, k)*A[k] for k in (0..n))
L.append(S)
return L
def A202410_list(n) :
return Lah_invtrans([i for i in (1..n)])
A202410_list(20)
(PARI) x='x+O('x^30); Vec(serlaplace(exp(x/(x-1))*(2*x-1)/(x-1))) \\ G. C. Greubel, May 23 2018
(Magma) m:=25; R<x>:=PowerSeriesRing(Rationals(), m); b:=Coefficients(R!(Exp(x/(x-1))*(2*x-1)/(x-1))); [Factorial(n-1)*b[n]: n in [1..m]]; // G. C. Greubel, May 23 2018
CROSSREFS
KEYWORD
sign
AUTHOR
Peter Luschny, Jan 18 2012
STATUS
approved