OFFSET
0,1
COMMENTS
Numbers of the form (r*n - r + 1)^2 + ((r+1)*n - r)^2; in this case, r=2.
Inverse binomial transform of this sequence: 5,-3, 26, 0, 0 (0 continued).
LINKS
Bruno Berselli, Table of n, a(n) for n = 0..1000
Index entries for linear recurrences with constant coefficients, signature (3,-3,1).
FORMULA
G.f.: (5 - 13*x + 34*x^2)/(1-x)^3.
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n > 2. - Wesley Ivan Hurt, Oct 09 2017
E.g.f.: (5 - 3*x + 13*x^2)*exp(x). - Elmo R. Oliveira, Oct 20 2024
MAPLE
MATHEMATICA
Table[13 n^2 - 16 n + 5, {n, 0, 42}]
PROG
(PARI) for(n=0, 42, print1(13*n^2-16*n+5", "));
(Magma) [13*n^2-16*n+5: n in [0..42]];
CROSSREFS
KEYWORD
nonn,easy,changed
AUTHOR
Bruno Berselli, Dec 12 2011
STATUS
approved