login
A201385
Irregular triangle T(n,k) (n >= 1, k >= 1) read by rows: T(n,1) = 2^n - 1; for k>1, T(n,k) = 0 for n <= 2*(k-1); otherwise T(n+1,k) = T(n,k-1) + T(n,k).
2
1, 3, 7, 3, 15, 10, 31, 25, 10, 63, 56, 35, 127, 119, 91, 35, 255, 246, 210, 126, 511, 501, 456, 336, 126, 1023, 1012, 957, 792, 462, 2047, 2035, 1969, 1749, 1254, 462, 4095, 4082, 4004, 3718, 3003, 1716, 8191, 8177, 8086, 7722, 6721, 4719, 1716
OFFSET
1,2
COMMENTS
A "Pascal Staircase".
The zero entries simplify the definition, but are not part of the official triangle.
LINKS
Ozer Ozturk and Piotr Pragacz, On Schur function expansions of Thom polynomials, arXiv:1111.6612 [math.AG], 2011-2012. See (59), p. 22.
EXAMPLE
Triangle begins:
1
3
7 3
15 10
31 25 10
63 56 35
127 119 91 35
...
MATHEMATICA
With[{rowmax=20}, DeleteCases[Transpose[PadLeft[NestWhileList[Accumulate[#[[2;; -2]]]&, 2^Range[rowmax]-1, Length[#]>2&]]], 0, 2]] (* Paolo Xausa, Nov 07 2023 *)
CROSSREFS
Columns k = 1, 2, 3 give A000225, A000247, A272352(n+1).
Row sums give A130783.
Sequence in context: A096385 A205723 A088837 * A186107 A282160 A338266
KEYWORD
nonn,tabf,easy
AUTHOR
Jonathan Vos Post, Nov 30 2011
EXTENSIONS
Entry revised by N. J. A. Sloane, Nov 07 2023
STATUS
approved