login
A282160
Least k > 1 such that k*n is not a totient number.
2
3, 7, 3, 17, 3, 15, 2, 19, 3, 5, 3, 43, 2, 7, 3, 19, 2, 5, 2, 17, 3, 7, 3, 167, 2, 7, 3, 11, 3, 3, 2, 19, 3, 2, 3, 67, 2, 2, 3, 17, 3, 17, 2, 7, 2, 5, 2, 211, 2, 7, 3, 7, 3, 11, 3, 13, 2, 3, 2, 139, 2, 2, 3, 31, 3, 9, 2, 5, 3, 5, 2, 109, 2, 5, 3, 2, 2, 3, 2, 85, 3, 3, 3, 61
OFFSET
1,1
COMMENTS
First occurrence of odd k or zero if impossible: 0, 1, 10, 2, 66, 28, 56, 6, 4, 8, 5244, 460, 272, 0, 232, 64, 7788, 4180, 300, 348, 328, 12, etc. - Robert G. Wilson v, Feb 09 2017
FORMULA
a(A079695(n)) = 2. - Michel Marcus, Feb 08 2017
EXAMPLE
a(14) = 7 because 7 * 14 = 98 is not a totient number and 7 is the least number that is greater than 1 with this property.
MATHEMATICA
TotientQ[m_] := Select[ Range[m +1, 2m*Product[(1 - 1/(k*Log[k]))^(-1), {k, 2, DivisorSigma[0, m]}]], EulerPhi[#] == m &, 1] != {}; (* after Jean-François Alcover, May 23 2011 in A002202 *) f[n_] := Block[{k = 2}, While[ TotientQ[k*n], k++]; k]; Array[f, 84] (* Robert G. Wilson v, Feb 09 2017 *)
PROG
(PARI) a(n) = my(k = 2); while (istotient(k*n), k++); k;
CROSSREFS
KEYWORD
nonn
AUTHOR
Altug Alkan, Feb 07 2017
STATUS
approved