login
A200990
T(n,k)=Number of nXk 0..4 arrays with every row and column nondecreasing rightwards and downwards, and the number of instances of each value within one of each other
8
5, 10, 10, 10, 10, 10, 5, 20, 20, 5, 1, 79, 92, 79, 1, 5, 21, 537, 537, 21, 5, 10, 226, 140, 1225, 140, 226, 10, 10, 157, 3157, 1095, 1095, 3157, 157, 10, 5, 227, 3604, 15023, 4919, 15023, 3604, 227, 5, 1, 678, 6692, 95845, 27000, 27000, 95845, 6692, 678, 1, 5, 120
OFFSET
1,1
COMMENTS
Table starts
..5..10....10......5.......1........5.........10..........10...........5
.10..10....20.....79......21......226........157.........227.........678
.10..20....92....537.....140.....3157.......3604........6692.......26168
..5..79...537...1225....1095....15023......95845......268375......325061
..1..21...140...1095....4919....27000......97341......383172.....1188521
..5.226..3157..15023...27000...752271....8434277....39361323....80878071
.10.157..3604..95845...97341..8434277...29555346...171588826..1801771085
.10.227..6692.268375..383172.39361323..171588826..1278883650.16557969007
..5.678.26168.325061.1188521.80878071.1801771085.16557969007.65182166083
..1.120..5408.168262.3704820.64001290..853004113..9528745293.89750034774
LINKS
FORMULA
T(n,1) = binomial(5,n modulo 5). For a 0..z array, T(n,1) = binomial(z+1, n modulo (z+1)).
EXAMPLE
Some solutions for n=5 k=3
..0..1..2....0..0..2....0..1..2....0..0..1....0..0..0....0..1..1....0..0..0
..0..1..3....0..1..2....0..1..2....0..1..3....1..1..2....0..1..2....1..1..1
..0..1..4....1..3..4....0..1..2....1..2..3....1..2..3....0..3..3....2..3..4
..2..2..4....1..3..4....3..3..4....2..2..3....2..3..3....2..3..4....2..3..4
..3..3..4....2..3..4....3..4..4....4..4..4....4..4..4....2..4..4....2..3..4
CROSSREFS
Column 1 for a 0..z array is binomial(z+1,n modulo (z+1))
Sequence in context: A065755 A346007 A135912 * A040020 A222181 A282172
KEYWORD
nonn,tabl
AUTHOR
R. H. Hardin Nov 25 2011
STATUS
approved