login
A346007
Let b=5. If n == -i (mod b) for 0 <= i < b, then a(n) = binomial(b,i+1)*((n+i)/b)^(i+1).
5
0, 1, 5, 10, 10, 5, 32, 80, 80, 40, 10, 243, 405, 270, 90, 15, 1024, 1280, 640, 160, 20, 3125, 3125, 1250, 250, 25, 7776, 6480, 2160, 360, 30, 16807, 12005, 3430, 490, 35, 32768, 20480, 5120, 640, 40, 59049, 32805, 7290, 810, 45, 100000, 50000, 10000, 1000, 50
OFFSET
0,3
COMMENTS
These are the numbers that would arise if the Moessner construction on page 64 of Conway-Guy's "Book of Numbers" were extended to the fifth powers.
REFERENCES
J. H. Conway and R. K. Guy, The Book of Numbers, Copernicus Press, NY, 1996. See pp. 63-64.
MAPLE
f:=proc(n, b) local i;
for i from 0 to b-1 do
if ((n+i) mod b) = 0 then return(binomial(b, i+1)*((n+i)/b)^(i+1)); fi;
od;
end;
[seq(f(n, 5), n=0..80)];
PROG
(Python)
from sympy import binomial
def A346007(n):
i = (5-n)%5
return binomial(5, i+1)*((n+i)//5)**(i+1) # Chai Wah Wu, Jul 25 2021
CROSSREFS
Setting b = 2, 3, or 4 gives A346004, A346005, and A346006.
Sequence in context: A280718 A321357 A065755 * A135912 A200990 A040020
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Jul 25 2021
STATUS
approved