

A199862


Decimal expansion of x>0 satisfying 4*x^2x*cos(x)=4*sin(x).


2



9, 8, 4, 4, 5, 3, 6, 3, 1, 7, 1, 3, 2, 8, 9, 9, 7, 5, 3, 8, 4, 7, 6, 0, 5, 7, 0, 6, 2, 8, 5, 3, 8, 4, 3, 3, 9, 9, 3, 2, 1, 7, 3, 8, 4, 5, 8, 2, 5, 0, 8, 3, 4, 2, 8, 9, 4, 5, 2, 1, 3, 1, 6, 1, 3, 7, 3, 0, 5, 8, 6, 1, 9, 7, 1, 3, 6, 5, 5, 7, 4, 4, 4, 0, 8, 8, 7, 8, 6, 8, 6, 1, 3, 8, 5, 0, 7, 9, 2
(list;
constant;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

0,1


COMMENTS

See A199597 for a guide to related sequences. The Mathematica program includes a graph.


LINKS

Table of n, a(n) for n=0..98.


EXAMPLE

x=0.984453631713289975384760570628538433993217384...


MATHEMATICA

a = 4; b = 1; c = 4;
f[x_] := a*x^2 + b*x*Cos[x]; g[x_] := c*Sin[x]
Plot[{f[x], g[x]}, {x, 2, 2}, {AxesOrigin > {0, 0}}]
r = x /. FindRoot[f[x] == g[x], {x, .98, .99}, WorkingPrecision > 110]
RealDigits[r] (* A199862 *)


CROSSREFS

Cf. A199597.
Sequence in context: A086306 A094139 A021508 * A019720 A200117 A019889
Adjacent sequences: A199859 A199860 A199861 * A199863 A199864 A199865


KEYWORD

nonn,cons


AUTHOR

Clark Kimberling, Nov 11 2011


STATUS

approved



