

A196362


Positive integers a for which there is a (5/2)Pythagorean triple (a,b,c) satisfying a<=b.


7



2, 3, 4, 5, 6, 6, 7, 7, 8, 9, 10, 10, 10, 10, 11, 11, 12, 12, 13, 14, 14, 14, 14, 15, 15, 15, 15, 16, 16, 16, 16, 17, 18, 18, 18, 19, 19, 20, 20, 20, 20, 21, 21, 21, 22, 22, 22, 22, 23, 23, 24, 24, 25, 25, 26, 26, 26, 26, 27, 27, 28, 28, 28, 28, 29, 30, 30, 30, 30, 30
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,1


COMMENTS

See A195770 for definitions of kPythagorean triple, primitive kPythagorean triple, and lists of related sequences.


LINKS

Table of n, a(n) for n=1..70.


MATHEMATICA

z8 = 900; z9 = 250; z7 = 200;
pIntegerQ := IntegerQ[#1] && #1 > 0 &;
k = 5/2; c[a_, b_] := Sqrt[a^2 + b^2 + k*a*b];
d[a_, b_] := If[pIntegerQ[c[a, b]], {a, b, c[a, b]}, 0]
t[a_] := Table[d[a, b], {b, a, z8}]
u[n_] := Delete[t[n], Position[t[n], 0]]
Table[u[n], {n, 1, 15}]
t = Table[u[n], {n, 1, z8}];
Flatten[Position[t, {}]]
u = Flatten[Delete[t, Position[t, {}]]];
x[n_] := u[[3 n  2]];
Table[x[n], {n, 1, z7}] (* A196362 *)
y[n_] := u[[3 n  1]];
Table[y[n], {n, 1, z7}] (* A196363 *)
z[n_] := u[[3 n]];
Table[z[n], {n, 1, z7}] (* A196364 *)
x1[n_] := If[GCD[x[n], y[n], z[n]] == 1, x[n], 0]
y1[n_] := If[GCD[x[n], y[n], z[n]] == 1, y[n], 0]
z1[n_] := If[GCD[x[n], y[n], z[n]] == 1, z[n], 0]
f = Table[x1[n], {n, 1, z9}];
x2 = Delete[f, Position[f, 0]] (* A196365 *)
g = Table[y1[n], {n, 1, z9}];
y2 = Delete[g, Position[g, 0]] (* A196366 *)
h = Table[z1[n], {n, 1, z9}];
z2 = Delete[h, Position[h, 0]] (* A196367 *)


CROSSREFS

Cf. A195770, A196363, A196364, A196365.
Sequence in context: A132172 A080680 A005376 * A195879 A305398 A216522
Adjacent sequences: A196359 A196360 A196361 * A196363 A196364 A196365


KEYWORD

nonn


AUTHOR

Clark Kimberling, Oct 01 2011


STATUS

approved



