This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A196362 Positive integers a for which there is a (-5/2)-Pythagorean triple (a,b,c) satisfying a<=b. 7
 2, 3, 4, 5, 6, 6, 7, 7, 8, 9, 10, 10, 10, 10, 11, 11, 12, 12, 13, 14, 14, 14, 14, 15, 15, 15, 15, 16, 16, 16, 16, 17, 18, 18, 18, 19, 19, 20, 20, 20, 20, 21, 21, 21, 22, 22, 22, 22, 23, 23, 24, 24, 25, 25, 26, 26, 26, 26, 27, 27, 28, 28, 28, 28, 29, 30, 30, 30, 30, 30 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS See A195770 for definitions of k-Pythagorean triple, primitive k-Pythagorean triple, and lists of related sequences. LINKS MATHEMATICA z8 = 900; z9 = 250; z7 = 200; pIntegerQ := IntegerQ[#1] && #1 > 0 &; k = -5/2; c[a_, b_] := Sqrt[a^2 + b^2 + k*a*b]; d[a_, b_] := If[pIntegerQ[c[a, b]], {a, b, c[a, b]}, 0] t[a_] := Table[d[a, b], {b, a, z8}] u[n_] := Delete[t[n], Position[t[n], 0]] Table[u[n], {n, 1, 15}] t = Table[u[n], {n, 1, z8}]; Flatten[Position[t, {}]] u = Flatten[Delete[t, Position[t, {}]]]; x[n_] := u[[3 n - 2]]; Table[x[n], {n, 1, z7}]  (* A196362 *) y[n_] := u[[3 n - 1]]; Table[y[n], {n, 1, z7}]  (* A196363 *) z[n_] := u[[3 n]]; Table[z[n], {n, 1, z7}]  (* A196364 *) x1[n_] := If[GCD[x[n], y[n], z[n]] == 1, x[n], 0] y1[n_] := If[GCD[x[n], y[n], z[n]] == 1, y[n], 0] z1[n_] := If[GCD[x[n], y[n], z[n]] == 1, z[n], 0] f = Table[x1[n], {n, 1, z9}]; x2 = Delete[f, Position[f, 0]]  (* A196365 *) g = Table[y1[n], {n, 1, z9}]; y2 = Delete[g, Position[g, 0]]  (* A196366 *) h = Table[z1[n], {n, 1, z9}]; z2 = Delete[h, Position[h, 0]]  (* A196367 *) CROSSREFS Cf. A195770, A196363, A196364, A196365. Sequence in context: A132172 A080680 A005376 * A195879 A305398 A216522 Adjacent sequences:  A196359 A196360 A196361 * A196363 A196364 A196365 KEYWORD nonn AUTHOR Clark Kimberling, Oct 01 2011 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 26 17:17 EDT 2019. Contains 323597 sequences. (Running on oeis4.)