OFFSET
1,2
COMMENTS
The polymath8 project led by Terry Tao refers to these numbers as "3-densely divisible". In general they say that n is y-densely divisible if its divisors increase by a factor of y or less, or equivalently, if for every R with 1 <= R <= n, there is a divisor in the interval [R/y,R]. They use this as a weakening of the condition that n be y-smooth. - David S. Metzler, Jul 02 2013
Let D(x) denote the number of such integers up to x. D(x) has order of magnitude x/log(x) (See Saias 1997). Moreover, we have D(x) = c*x/log(x) + O(x/(log(x))^2), where c = 2.05544... (See Weingartner 2015, 2019). As a result, a(n) = C*n*log(n*log(n)) + O(n), where C = 1/c = 0.486513... - Andreas Weingartner, Jun 25 2021
LINKS
Reinhard Zumkeller, Table of n, a(n) for n = 1..10000
Eric Saias, Entiers à diviseurs denses 1, Journal of Number Theory, Vol. 62, No. 1 (1997), pp. 163-191.
Terence Tao, A Truncated Elementary Selberg Sieve of Pintz. (blog entry defining y-densely divisible)
Terence Tao et al., Polymath8 home page.
Andreas Weingartner, Practical numbers and the distribution of divisors, The Quarterly Journal of Mathematics, Vol. 66, No. 2 (2015), pp. 743-758; arXiv preprint, arXiv:1405.2585 [math.NT], 2014-2015.
Andreas Weingartner, On the constant factor in several related asymptotic estimates, Math. Comp., Vol. 88, No. 318 (2019), pp. 1883-1902; arXiv preprint, arXiv:1705.06349 [math.NT], 2017-2018.
FORMULA
a(n) = A052287(n) / 3.
a(n) = C*n*log(n*log(n)) + O(n), where C = 0.486513… (See comments). - Andreas Weingartner, Jun 25 2021
EXAMPLE
14 is not a term because its divisors are 1,2,7,14, and the gap from 2 to 7 is more than a factor of 3. - N. J. A. Sloane, Aug 03 2015
MATHEMATICA
dif3[n_]:=Max[#[[2]]/#[[1]]&/@Partition[Divisors[n], 2, 1]]<=3; Select[ Range[ 200], dif3] (* Harvey P. Dale, Jun 08 2015 *)
PROG
(Haskell)
a196149 n = a196149_list !! (n-1)
a196149_list = filter f [1..] where
f n = all (<= 0) $ zipWith (-) (tail divs) (map (* 3) divs)
where divs = a027750_row' n
-- Reinhard Zumkeller, Jun 25 2015, Sep 28 2011
(PARI) is(n)=my(d=divisors(n)); for(i=2, #d, if(d[i]>3*d[i-1], return(0))); 1 \\ Charles R Greathouse IV, Jul 06 2013
(Python)
from sympy import divisors
def ok(n):
d = divisors(n)
return all(d[i]/d[i-1] <= 3 for i in range(1, len(d)))
print(list(filter(ok, range(1, 151)))) # Michael S. Branicky, Jun 25 2021
CROSSREFS
KEYWORD
nonn
AUTHOR
Reinhard Zumkeller, Sep 28 2011
STATUS
approved