login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A196105 Positive integers a for which there is a (7/4)-Pythagorean triple (a,b,c) satisfying a<=b. 8
9, 10, 11, 12, 13, 14, 17, 18, 19, 20, 21, 22, 24, 25, 26, 26, 27, 28, 28, 29, 30, 31, 33, 34, 34, 35, 36, 36, 37, 38, 39, 40, 42, 42, 42, 43, 44, 44, 44, 45, 46, 47, 48, 50, 51, 52, 52, 52, 53, 54, 55, 56, 56, 57, 58, 60, 60, 60, 61, 62, 62, 63, 63, 64, 65, 66, 66 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

COMMENTS

See A195770 for definitions of k-Pythagorean triple, primitive k-Pythagorean triple, and lists of related sequences.

LINKS

Table of n, a(n) for n=1..67.

MATHEMATICA

z8 = 900; z9 = 250; z7 = 200;

k = 7/4; c[a_, b_] := Sqrt[a^2 + b^2 + k*a*b];

d[a_, b_] := If[IntegerQ[c[a, b]], {a, b, c[a, b]}, 0]

t[a_] := Table[d[a, b], {b, a, z8}]

u[n_] := Delete[t[n], Position[t[n], 0]]

Table[u[n], {n, 1, 15}]

t = Table[u[n], {n, 1, z8}];

Flatten[Position[t, {}]]

u = Flatten[Delete[t, Position[t, {}]]];

x[n_] := u[[3 n - 2]];

Table[x[n], {n, 1, z7}]  (* A196105 *)

y[n_] := u[[3 n - 1]];

Table[y[n], {n, 1, z7}]  (* A196106 *)

z[n_] := u[[3 n]];

Table[z[n], {n, 1, z7}]  (* A196107 *)

x1[n_] := If[GCD[x[n], y[n], z[n]] == 1, x[n], 0]

y1[n_] := If[GCD[x[n], y[n], z[n]] == 1, y[n], 0]

z1[n_] := If[GCD[x[n], y[n], z[n]] == 1, z[n], 0]

f = Table[x1[n], {n, 1, z9}];

x2 = Delete[f, Position[f, 0]]  (* A196108 *)

g = Table[y1[n], {n, 1, z9}];

y2 = Delete[g, Position[g, 0]]  (* A196109 *)

h = Table[z1[n], {n, 1, z9}];

z2 = Delete[h, Position[h, 0]]  (* A196110 *)

CROSSREFS

Cf. A195770, A196106, A196107, A196108.

Sequence in context: A058365 A162789 A121816 * A196108 A181699 A281196

Adjacent sequences:  A196102 A196103 A196104 * A196106 A196107 A196108

KEYWORD

nonn

AUTHOR

Clark Kimberling, Sep 28 2011

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified February 16 09:23 EST 2019. Contains 320161 sequences. (Running on oeis4.)