This site is supported by donations to The OEIS Foundation.

Thanks to everyone who made a donation during our annual appeal!
To see the list of donors, or make a donation, see the OEIS Foundation home page.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A195459 phi(3*n)/2. 2
 1, 1, 3, 2, 4, 3, 6, 4, 9, 4, 10, 6, 12, 6, 12, 8, 16, 9, 18, 8, 18, 10, 22, 12, 20, 12, 27, 12, 28, 12, 30, 16, 30, 16, 24, 18, 36, 18, 36, 16, 40, 18, 42, 20, 36, 22, 46, 24, 42, 20, 48, 24, 52, 27, 40, 24, 54, 28, 58, 24, 60, 30, 54, 32, 48, 30, 66, 32, 66, 24, 70, 36, 72, 36, 60, 36, 60, 36, 78, 32, 81, 40, 82 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,3 COMMENTS Compare the o.g.f. of this sequence to the following identity: _ Sum_{n>=1} -moebius(3*n)*x^n/(1-x^n) = Sum_{n>=0} x^(3^n). Here phi(n) = A000010(n), the Euler totient function of n. a(n) = b(n)*c(n) where b(n) = 1, 1, 3, 2, 1,.. is a multiplicative function with b(p^e) = p^(e-1) for p<>3 and p(3^e)=3^e, and where c(n) = 1, 1, 1, 1, 4, 1, 6, 1, 1... is a multiplicative function with c(p^e)=p-1 for p <> 3 and c(3^e)=1. - R. J. Mathar, Jul 02 2013 LINKS Paul D. Hanna, Table of n, a(n) for n = 1..1000 M. Picquet, Applications de la representation des courbes du troisieme degre, Journal de l'Ă‰cole Polytechnique, Paris, 35 (1884), pp. 31-100. FORMULA O.g.f.: Sum_{n>=1} -moebius(3*n)*x^n/(1-x^n)^2 = Sum_{n>=1} phi(3*n)/2*x^n. a(n) = n*Prod_{p | n, p prime, p != 3} (1 - 1/p). [Picquet, p. 73.] EXAMPLE G.f.: A(x) = x + x^2 + 3*x^3 + 2*x^4 + 4*x^5 + 3*x^6 + 6*x^7 + 4*x^8 +... where A(x) = x/(1-x)^2 - x^2/(1-x^2)^2 + 0*x^3/(1-x^3)^2 + 0*x^4/(1-x^4)^2 - x^5/(1-x^5)^2 + 0*x^6/(1-x^6)^2 - x^7/(1-x^7)^2 + 0*x^8/(1-x^8)^2 + 0*x^9/(1-x^9)^2 + x^10/(1-x^10)^2 - x^11/(1-x^11)^2 +...+ -moebius(3*n)*x^n/(1-x^n)^2 +... PROG (PARI) {a(n)=polcoeff(sum(m=1, n, -moebius(3*m)*x^m/(1-x^m+x*O(x^n))^2), n)} CROSSREFS Cf. A000010 (phi), A062570. Sequence in context: A140114 A243852 A025532 * A133131 A261985 A026923 Adjacent sequences:  A195456 A195457 A195458 * A195460 A195461 A195462 KEYWORD nonn,mult AUTHOR Paul D. Hanna, Sep 18 2011 EXTENSIONS Picquet formula and reference added by N. J. A. Sloane, Nov 23 2011 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified January 19 20:33 EST 2019. Contains 319310 sequences. (Running on oeis4.)