login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A194624 Decimal expansion of the smaller solution to x^x = 3/4. 1
1, 5, 3, 5, 1, 6, 7, 8, 9, 6, 6, 3, 9, 5, 2, 9, 4, 7, 1, 5, 0, 0, 6, 8, 3, 3, 2, 9, 7, 8, 4, 6, 3, 2, 2, 7, 7, 1, 1, 2, 6, 9, 4, 8, 5, 4, 8, 9, 9, 6, 9, 6, 2, 0, 3, 1, 7, 9, 8, 5, 4, 2, 8, 3, 3, 4, 3, 7, 2, 6, 1, 3, 6, 4, 1, 9, 0, 5, 8, 3, 0, 2, 9, 3, 6, 8, 7, 6, 6, 0, 5, 3, 0, 1, 9, 3, 7, 1, 9, 4 (list; constant; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

Since (1/e)^(1/e) < 3/4 < 1, the equation x^x = 3/4 has two solutions x = a and x = b with 0 < a < 1/e < b < 1. Both solutions are transcendental (see Proposition 2.2 in Sondow-Marques 2010).

LINKS

Table of n, a(n) for n=0..99.

J. Sondow and D. Marques, Algebraic and transcendental solutions of some exponential equations, Annales Mathematicae et Informaticae 37 (2010) 151-164.

Index entries for transcendental numbers

EXAMPLE

0.15351678966395294715006833297846322771126948548996962031798542833437261364190...

MATHEMATICA

x = x /. FindRoot[x^x == 3/4, {x, 0.1}, WorkingPrecision -> 120]; RealDigits[x, 10, 100] // First

CROSSREFS

Cf. A030798 (x^x = 2), A072364 ((1/e)^(1/e)), A194625 (larger solution to x^x = 3/4).

Sequence in context: A071050 A271780 A176036 * A239805 A270915 A319461

Adjacent sequences:  A194621 A194622 A194623 * A194625 A194626 A194627

KEYWORD

nonn,cons

AUTHOR

Jonathan Sondow, Sep 02 2011

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified November 13 23:01 EST 2019. Contains 329106 sequences. (Running on oeis4.)