OFFSET
0,3
COMMENTS
Essentially the first differences of A194442. It appears that the structure of the "narrow" triangle is much more regular about n=2^k, see formula section.
LINKS
FORMULA
Conjectures for n = 2^k+j, if -6<=j<=6:
a(2^k-6) = 2^(k-2), if k >= 3.
a(2^k-5) = 2^(k-1), if k >= 3.
a(2^k-4) = 2^k-4, if k >= 2.
a(2^k-3) = 2^(k-1), if k >= 3.
a(2^k-2) = 2^(k-1), if k >= 2.
a(2^k-1) = 3*2^(k-2)+1, if k >= 2.
a(2^k+0) = 2^k, if k >= 0.
a(2^k+1) = 4, if k >= 1.
a(2^k+2) = 4, if k >= 1.
a(2^k+3) = 8, if k >= 3.
a(2^k+4) = 12, if k >= 3.
a(2^k+5) = 16, if k >= 4.
a(2^k+6) = 16, if k >= 4.
End of conjectures.
EXAMPLE
If written as a triangle:
0,
1,
2,
4,4,
4,4,7,8,
4,4,8,12,8,8,13,16,
4,4,8,12,16,16,20,24,12,8,16,28,16,16,25,32,
4,4,8,12,16,16,22,32,26,20,24,40,32,40,33,48,20,8,16,28...
.
It appears that rows converge to A194697.
CROSSREFS
KEYWORD
nonn
AUTHOR
Omar E. Pol, Aug 29 2011
STATUS
approved