The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A008497 a(n) = floor(n/5)*floor((n+1)/5). 2
 0, 0, 0, 0, 0, 1, 1, 1, 1, 2, 4, 4, 4, 4, 6, 9, 9, 9, 9, 12, 16, 16, 16, 16, 20, 25, 25, 25, 25, 30, 36, 36, 36, 36, 42, 49, 49, 49, 49, 56, 64, 64, 64, 64, 72, 81, 81, 81, 81, 90, 100, 100, 100, 100, 110, 121, 121, 121, 121 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,10 LINKS G. C. Greubel, Table of n, a(n) for n = 0..1000 Index entries for linear recurrences with constant coefficients, signature (1,0,0,0,2,-2,0,0,0,-1,1). FORMULA From R. J. Mathar, Apr 16 2010: (Start) a(n) = A002266(n)*A002266(n+1). a(n)= a(n-1) + 2*a(n-5) - 2*a(n-6) - a(n-10) + a(n-11). G.f.: x^5*(1+x^4)/ ((x^4+x^3+x^2+x+1)^2 * (1-x)^3). (End) MAPLE seq( mul(floor((n+j)/5), j=0..1), n=0..55); # G. C. Greubel, Nov 08 2019 MATHEMATICA Times@@@Partition[Floor[Range[0, 60]/5], 2, 1] (* or *) LinearRecurrence[ {1, 0, 0, 0, 2, -2, 0, 0, 0, -1, 1}, {0, 0, 0, 0, 0, 1, 1, 1, 1, 2, 4}, 60] (* Harvey P. Dale, Feb 01 2015 *) Product[Floor[(Range[55] +j-1)/5], {j, 0, 1}] (* G. C. Greubel, Nov 08 2019 *) PROG (PARI) a(n) = (n\5)*((n+1)\5); \\ Michel Marcus, Jan 06 2017 (PARI) vector(56, n, prod(j=0, 1, (n+j-1)\5) ) \\ G. C. Greubel, Nov 08 2019 (MAGMA) [&*[Floor((n+j)/5): j in [0..1]]: n in [0..55]]; // G. C. Greubel, Nov 08 2019 (Sage) [product(floor((n+j)/5) for j in (0..1)) for n in (0..55)] # G. C. Greubel, Nov 08 2019 (GAP) List([0..55], n-> Int(n/5)*Int((n+1)/5) ); # G. C. Greubel, Nov 08 2019 CROSSREFS Cf. A002266. Sequence in context: A160409 A035645 A063440 * A220497 A194443 A220523 Adjacent sequences:  A008494 A008495 A008496 * A008498 A008499 A008500 KEYWORD nonn AUTHOR STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified January 24 04:34 EST 2020. Contains 331183 sequences. (Running on oeis4.)