login
A193392
Hyper-Wiener index of a benzenoid consisting of a spiral chain of n hexagons (s=1; see the Gutman et al. reference).
9
42, 215, 636, 1401, 2622, 4427, 6960, 10381, 14866, 20607, 27812, 36705, 47526, 60531, 75992, 94197, 115450, 140071, 168396, 200777, 237582, 279195, 326016, 378461, 436962, 501967, 573940, 653361, 740726, 836547, 941352, 1055685, 1180106, 1315191, 1461532
OFFSET
1,1
LINKS
A. A. Dobrynin, I. Gutman, S. Klavzar, P. Zigert, Wiener Index of Hexagonal Systems , Acta Applicandae Mathematicae 72 (2002), pp. 247-294.
I. Gutman, S. Klavzar, M. Petkovsek, and P. Zigert, On Hosoya polynomials of benzenoid graphs, Comm. Math. Comp. Chem. (MATCH), 43, 2001, 49-66.
FORMULA
a(n) = (2*n^4 + 28*n^3 + 154*n^2 - 169*n + 111)/3.
G.f.: x*(42 + 5*x - 19*x^2 - 49*x^3 + 37*x^4)/(1-x)^5. - Bruno Berselli, Jul 27 2011
MAPLE
a := proc (n) options operator, arrow; (2/3)*n^4+(28/3)*n^3+(154/3)*n^2-(169/3)*n+37 end proc: seq(a(n), n = 1 .. 35);
PROG
(Magma) [(2*n^4 + 28*n^3 + 154*n^2 - 169*n + 111)/3: n in [1..40]]; // Vincenzo Librandi, Jul 26 2011
(PARI) a(n)=(2*n^4+28*n^3+154*n^2-169*n)/3+37 \\ Charles R Greathouse IV, Jul 26 2011
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Emeric Deutsch, Jul 25 2011
STATUS
approved