login
A143938
The Wiener index of a benzenoid consisting of a linear chain of n hexagons.
15
27, 109, 279, 569, 1011, 1637, 2479, 3569, 4939, 6621, 8647, 11049, 13859, 17109, 20831, 25057, 29819, 35149, 41079, 47641, 54867, 62789, 71439, 80849, 91051, 102077, 113959, 126729, 140419, 155061, 170687, 187329, 205019, 223789, 243671
OFFSET
1,1
LINKS
A. A. Dobrynin, I. Gutman, S. Klavzar, P. Zigert, Wiener Index of Hexagonal Systems, Acta Applicandae Mathematicae 72 (2002), pp. 247-294.
FORMULA
a(n) = (1/3)*(16*n^3 + 36*n^2 + 26*n + 3).
G.f.: z*(27+z+5*z^2-z^3)/(1-z)^4.
a(n) = Sum_{k=1,..,2*n+1} k*A143937(n,k).
EXAMPLE
a(1)=27 because in a hexagon we have 6 distances equal to 1, 6 distances equal to 2 and 3 distances equal to 3 (6*1+6*2+3*3=27).
MAPLE
seq((16*n^3+36*n^2+26*n+3)*1/3, n = 1 .. 35)
MATHEMATICA
Table[(1/3)*(16*n^3 + 36*n^2 + 26*n + 3), {n, 1, 50}] (* or *) LinearRecurrence[{4, -6, 4, -1}, {27, 109, 279, 569}, 50] (* G. C. Greubel, Dec 08 2016 *)
CROSSREFS
Cf. A143937.
Sequence in context: A193391 A193399 A193393 * A042428 A158554 A267812
KEYWORD
nonn,easy
AUTHOR
Emeric Deutsch, Sep 06 2008
STATUS
approved