login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A143940 Triangle read by rows: T(n,k) is the number of unordered pairs of vertices at distance k in a linear chain of n triangles (i.e., joined like VVV..VV; here V is a triangle!), 1 <= k <= n. 1
3, 6, 4, 9, 8, 4, 12, 12, 8, 4, 15, 16, 12, 8, 4, 18, 20, 16, 12, 8, 4, 21, 24, 20, 16, 12, 8, 4, 24, 28, 24, 20, 16, 12, 8, 4, 27, 32, 28, 24, 20, 16, 12, 8, 4, 30, 36, 32, 28, 24, 20, 16, 12, 8, 4, 33, 40, 36, 32, 28, 24, 20, 16, 12, 8, 4, 36, 44, 40, 36, 32, 28, 24, 20, 16, 12, 8, 4 (list; table; graph; refs; listen; history; text; internal format)
OFFSET

1,1

COMMENTS

The entries in row n are the coefficients of the Wiener polynomial of a linear chain of n triangles.

Sum of entries in row n = n(2n+1) = A014105(n).

Sum_{k=1..n} k*T(n,k) = the Wiener index of the linear chain of n triangles = A143941(n).

LINKS

Table of n, a(n) for n=1..78.

B. E. Sagan, Y-N. Yeh and P. Zhang, The Wiener Polynomial of a Graph, Internat. J. of Quantum Chem., 60, 1996, 959-969.

FORMULA

T(n,1)=3n; T(n,k) = 4(n-k+1) for k>1.

G.f. = G(q,z) = qz/(3+qz)/((1-qz)*(1-z)^2).

EXAMPLE

T(2,1)=6 because the chain of 2 triangles has 6 edges.

Triangle starts:

   3;

   6,  4;

   9,  8,  4;

  12, 12,  8,  4;

  15, 16, 12,  8,  4;

MAPLE

T:=proc(n, k) if n < k then 0 elif k = 1 then 3*n else 4*n-4*k+4 end if end proc: for n to 12 do seq(T(n, k), k=1..n) end do; # yields sequence in triangular form

CROSSREFS

Cf. A014105, A143941.

Sequence in context: A100000 A083682 A021278 * A083349 A065230 A242224

Adjacent sequences:  A143937 A143938 A143939 * A143941 A143942 A143943

KEYWORD

nonn,tabl

AUTHOR

Emeric Deutsch, Sep 06 2008

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified August 24 02:32 EDT 2017. Contains 291052 sequences.