login
A193108
The tetrahedral numbers A000292 mod 10.
0
1, 4, 0, 0, 5, 6, 4, 0, 5, 0, 6, 4, 5, 0, 0, 6, 9, 0, 0, 0, 1, 4, 0, 0, 5, 6, 4, 0, 5, 0, 6, 4, 5, 0, 0, 6, 9, 0, 0, 0, 1, 4, 0, 0, 5, 6, 4, 0, 5, 0, 6, 4, 5, 0, 0, 6, 9, 0, 0, 0, 1, 4, 0, 0, 5, 6, 4, 0, 5, 0, 6, 4, 5, 0, 0, 6, 9, 0, 0, 0, 1, 4, 0, 0, 5, 6, 4, 0, 5, 0, 6, 4, 5, 0, 0, 6, 9, 0, 0, 0
OFFSET
1,2
COMMENTS
Periodic with period 20.
The cycle is symmetric about index 9 in that a(8)+a(10), a(7)+a(11), etc are all congruent to 0 mod 10.
If the first diagonal of Pascal's triangle is given index 0 this sequence is the 3rd diagonal of Pascal's triangle modulo 10, or the binomial coefficients C(n+2,3)mod 10. Note that the last three terms in the cycle are 0.
The Pisano period lengths of A000292 (mod m) are 1, 4, 9, 8, 5, 36, 7, 16, 27, 20, 11, 72, 13, 28, 45, 32, 17,108, 19, 40.., for m>=1. This sequence describes the case m=10. - R. J. Mathar, Oct 25 2011
LINKS
Index entries for linear recurrences with constant coefficients, signature (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1).
FORMULA
a(n) = a(n-20).
G.f. -x*(1+4*x+5*x^4+6*x^5+4*x^6+5*x^8+6*x^10+4*x^11+5*x^12+6*x^15+9*x^16) / ( (x-1)*(1+x^4+x^3+x^2+x)*(1+x)*(1-x+x^2-x^3+x^4)*(1+x^2)*(x^8-x^6+x^4-x^2+1) ). - R. J. Mathar, Oct 25 2011
a(n) = 55 -a(n-1) -a(n-2) … -a(n-18) -a(n-19). - Ant King, Oct 19 2012
MATHEMATICA
Table[Mod[Binomial[n+2, 3], 10], {n, 1, 21}]
CROSSREFS
Sequence in context: A273515 A308225 A021718 * A212044 A290335 A341795
KEYWORD
nonn,easy
AUTHOR
Chris Fry, Jul 16 2011
EXTENSIONS
Edited by N. J. A. Sloane, Jul 16 2011
STATUS
approved