login
A193106
Minimal number of terms of A005826 needed to sum to n.
2
1, 1, 2, 3, 4, 5, 1, 2, 3, 4, 5, 6, 2, 3, 4, 1, 2, 3, 3, 4, 5, 2, 3, 4, 4, 5, 6, 3, 4, 1, 2, 3, 4, 4, 5, 2, 3, 4, 5, 5, 6, 3, 4, 5, 2, 3, 4, 4, 5, 1, 2, 3, 4, 5, 6, 2, 3, 4, 2, 3, 4, 3, 4, 5, 2, 3, 4, 4, 5, 6, 3, 4, 5, 3, 4, 5, 1, 2, 2, 3, 4, 5, 2, 3, 3, 4, 5, 3, 3, 4, 4, 2, 3, 3, 4, 5, 5, 3, 2, 3, 4, 5, 4, 4, 3, 2, 3, 3, 4, 5, 4, 1, 2, 3, 4, 5, 4, 2, 3, 4, 3
OFFSET
1,3
COMMENTS
Watson showed that a(n) <= 8 for all n.
It is likely that a(n) <= 6 for all n (see A193107).
LINKS
G. L. Watson, Sums of eight values of a cubic polynomial, J. London Math. Soc., 27 (1952), 217-224.
MAPLE
t1:=[seq((n^3-7*n)/6, n=3..20)];
LAGRANGE(t1, 8 120); # the LAGRANGE transform of a sequence is defined in A193101 - N. J. A. Sloane, Jul 15 2011
CROSSREFS
Sequence in context: A105932 A106652 A338479 * A338491 A338494 A283370
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Jul 15 2011
STATUS
approved