This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A193106 Minimal number of terms of A005826 needed to sum to n. 2
 1, 1, 2, 3, 4, 5, 1, 2, 3, 4, 5, 6, 2, 3, 4, 1, 2, 3, 3, 4, 5, 2, 3, 4, 4, 5, 6, 3, 4, 1, 2, 3, 4, 4, 5, 2, 3, 4, 5, 5, 6, 3, 4, 5, 2, 3, 4, 4, 5, 1, 2, 3, 4, 5, 6, 2, 3, 4, 2, 3, 4, 3, 4, 5, 2, 3, 4, 4, 5, 6, 3, 4, 5, 3, 4, 5, 1, 2, 2, 3, 4, 5, 2, 3, 3, 4, 5, 3, 3, 4, 4, 2, 3, 3, 4, 5, 5, 3, 2, 3, 4, 5, 4, 4, 3, 2, 3, 3, 4, 5, 4, 1, 2, 3, 4, 5, 4, 2, 3, 4, 3 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,3 COMMENTS Watson showed that a(n) <= 8 for all n. It is likely that a(n) <= 6 for all n (see A193107). LINKS H. E. Salzer and N. Levine, Proof that every integer <= 452,479,659 is a sum of five numbers of the form Q_x = (x^3+5x)/6, x>= 0, Math. Comp., (1968), 191-192. G. L. Watson, Sums of eight values of a cubic polynomial, J. London Math. Soc., 27 (1952), 217-224. MAPLE t1:=[seq((n^3-7*n)/6, n=3..20)]; LAGRANGE(t1, 8 120); # the LAGRANGE transform of a sequence is defined in A193101 - N. J. A. Sloane, Jul 15 2011 CROSSREFS Cf. A005826, A193107. Sequence in context: A010884 A105932 A106652 * A283370 A053827 A033926 Adjacent sequences:  A193103 A193104 A193105 * A193107 A193108 A193109 KEYWORD nonn AUTHOR N. J. A. Sloane, Jul 15 2011 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified October 14 14:39 EDT 2019. Contains 328019 sequences. (Running on oeis4.)