login
A192653
Binomial convolution of the Floor-Sqrt transform of Catalan numbers.
0
1, 2, 4, 10, 28, 82, 264, 866, 2984, 10476, 37500, 135916, 496242, 1821384, 6712394, 24818020, 92016874, 342043052, 1274461144, 4759439600, 17812520318, 66803249358, 251038475982, 945202437760, 3565529448118, 13474452634994, 51010511291144, 193438196953970
OFFSET
0,2
FORMULA
a(n) = sum(binomial(n,k)*floor(sqrt(binomial(2*k,k)/(k+1)))*floor(sqrt(binomial(2*n-2*k,n-k)/(n-k+1))),k=0..n).
MATHEMATICA
Table[Sum[Binomial[n, k]Floor[Sqrt[Binomial[2k, k]/(k+1)]]Floor[Sqrt[Binomial[2n-2k, n-k]/(n-k+1)]], {k, 0, n}], {n, 0, 100}]
PROG
(Maxima) makelist(sum(binomial(n, k)*floor(sqrt(binomial(2*k, k)/(k+1)))*floor(sqrt(binomial(2*n-2*k, n-k)/(n-k+1))), k, 0, n), n, 0, 24);
CROSSREFS
Sequence in context: A187256 A148110 A149823 * A149824 A331938 A302146
KEYWORD
nonn
AUTHOR
Emanuele Munarini, Jul 07 2011
STATUS
approved