login
A192256
0-sequence of reduction of (n^3) by x^2 -> x+1.
2
1, 1, 28, 92, 342, 990, 2705, 6801, 16278, 37278, 82532, 177572, 373105, 768241, 1554616, 3098808, 6095738, 11851922, 22805745, 43477745, 82197986, 154231706, 287411688, 532248552, 980014177, 1794978145, 3271695220, 5936514356, 10726952958
OFFSET
1,3
COMMENTS
See A192232 for definition of "k-sequence of reduction of [sequence] by [substitution]".
FORMULA
Empirical G.f.: x*(1-4*x+29*x^2-36*x^3+43*x^4-16*x^5+2*x^6)/(1-x)/(1-x-x^2)^4. [Colin Barker, Feb 10 2012]
MATHEMATICA
c[n_] := n^3; (* A000578 *)
Table[c[n], {n, 1, 15}]
q[x_] := x + 1;
p[0, x_] := 1; p[n_, x_] := p[n - 1, x] + (x^n)*c[n + 1]
reductionRules = {x^y_?EvenQ -> q[x]^(y/2),
x^y_?OddQ -> x q[x]^((y - 1)/2)};
t = Table[
Last[Most[
FixedPointList[Expand[#1 /. reductionRules] &, p[n, x]]]], {n, 0,
30}]
Table[Coefficient[Part[t, n], x, 0], {n, 1, 30}] (* A192256 *)
Table[Coefficient[Part[t, n], x, 1], {n, 1, 30}] (* A192257 *)
(* by Peter J. C. Moses, Jun 20 2011 *)
CROSSREFS
Sequence in context: A044596 A331765 A333280 * A005971 A189808 A130085
KEYWORD
nonn
AUTHOR
Clark Kimberling, Jun 27 2011
STATUS
approved