login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual appeal: Please make a donation to keep the OEIS running! Over 6000 articles have referenced us, often saying "we discovered this result with the help of the OEIS".
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A192059 G.f. C(C(x)) where C(x) satisfies: C(C(x)) + S(S(x)) = x where S(C(x)) = 2*x*C(x). 3
1, 0, 0, -8, 0, 0, -64, 0, 0, -2432, 0, 0, -119808, 0, 0, -7774208, 0, 0, -578314240, 0, 0, -47951675392, 0, 0, -4311368204288, 0, 0, -414374348980224, 0, 0, -42136339579142144, 0, 0, -4500840888508874752, 0, 0, -502320056591861153792 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,4

LINKS

Table of n, a(n) for n=1..37.

FORMULA

Functions C(x) and S(x) satisfy:

(1) C'(C(x))*C'(x) + S'(S(x))*S'(x) = 1,

(2) S'(C(x))*C'(x) = 2*C(x) + 2*x*C'(x).

EXAMPLE

G.f.: C(C(x)) = x - 8*x^4 - 64*x^7 - 2432*x^10 - 119808*x^13 - 7774208*x^16 +...

Related expansions are

S(S(x)) = 8*x^4 + 64*x^7 + 2432*x^10 + 119808*x^13 + 7774208*x^16 +...

C(x) = x - 4*x^4 - 64*x^7 - 2432*x^10 - 125952*x^13 - 8086016*x^16 +...

S(x) = 2*x^2 + 8*x^5 + 256*x^8 + 13312*x^11 + 868352*x^14 + 65436672*x^17 +...

S(C(x)) = 2*x^2 - 8*x^5 - 128*x^8 - 4864*x^11 - 251904*x^14 - 16172032*x^17 +...

PROG

(PARI) {a(n)=local(C=x, S=2*x^2, Cv=[1]);

for(i=0, n\3, Cv=concat(Cv, [0, 0, 0]); C=x*Ser(Cv); S=2*x*serreverse(C);

Cv[#Cv]=-polcoeff((subst(C, x, C)+subst(S, x, S))/2, #Cv); ); polcoeff(subst(C, x, C), n)}

CROSSREFS

Cf. A192057 (C(x)), A192058 (S(x)), A191419 (variant).

Sequence in context: A028701 A126270 A169696 * A191419 A054373 A061847

Adjacent sequences:  A192056 A192057 A192058 * A192060 A192061 A192062

KEYWORD

sign

AUTHOR

Paul D. Hanna, Jun 21 2011

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified December 11 19:09 EST 2017. Contains 295919 sequences.