login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A126270 a(n) = order of Galois group of the polynomial P(x) + n if P(x) + n (after dividing by the gcd of its coefficients) is irreducible, otherwise a(n) = 0, where P(x) = x^8 - 8*x^6 + 20*x^4 - 16*x^2 + 2. 2
8, 0, 0, 32, 32, 32, 16, 16, 32, 32, 32, 32, 32, 32, 16, 32, 16, 32, 32, 32, 32, 32, 32, 16, 32, 32, 32, 32, 32, 32, 16, 32, 32, 32, 0, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 8, 16, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 16, 32, 32, 32, 32, 32, 32, 32, 16 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,1

COMMENTS

P = 2*T_8(x/2), where T_8(x) is the degree 8 Chebyshev polynomial of the first kind.

For zeros in this sequence see A136362.

LINKS

Table of n, a(n) for n=0..70.

Eric Weisstein's World of Mathematics, Chebyshev Polynomial of the First Kind

EXAMPLE

Galois group of P+6 = x^8 - 8*x^6 + 20*x^4 - 16*x^2 + 8 is group 6 of degree 8 in MAGMA Transitive Group Identification, permutation group acting on a set of cardinality 8 with two generators, isomorphic to dihedral group D(8); it has index 2520 in symmetric group Sym(8) and order 16. Hence a(6) = 16.

a(34) = 0 since P+34 = x^8 - 8*x^6 + 20*x^4 - 16*x^2 + 36 = (x^4 - 8*x^2 + 18)*(x^4 + 2) is not irreducible.

PROG

(MAGMA) Zx<x>:=PolynomialRing(Integers()); T:=Coefficients(ChebyshevT(8)); P:=Zx ! [ 2^(2-i)*T[i]: i in [1..#T] ]; [ IsIrreducible(f) select Order(GaloisGroup(f)) else 0 where f is P+n: n in [0..70] ]; /* Klaus Brockhaus, Dec 27 2007 */

(MAGMA) Q:=RationalField(); R<x>:=PolynomialRing(Q); f:=x^8 - 8*x^6 + 20*x^4 - 16*x^2 + 1; for n in {0 .. 30} do f:=f+1; if IsIrreducible(f) then Order(GaloisGroup(f)); else 0; end if; end for; /* N. J. A. Sloane, Dec 28 2007 */

CROSSREFS

Cf. A124827, A126271, A136362.

Sequence in context: A028593 A037216 A028701 * A169696 A192059 A191419

Adjacent sequences:  A126267 A126268 A126269 * A126271 A126272 A126273

KEYWORD

nonn

AUTHOR

Artur Jasinski, Dec 23 2006

EXTENSIONS

Edited and extended by Klaus Brockhaus, Dec 27 2007

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified August 19 17:41 EDT 2018. Contains 313880 sequences. (Running on oeis4.)